Section 1 – General Information
A. Purpose of the Guideline
B. Procedure for Revision and Additions
C. Who to Call for Assistance
D. College Policy
E. Roles and Responsibility
F. Emergency Response
G. Terms and Definitions
H. Regulatory Authority and Related Programs

Section 2 – Hazard Communication Standard
A. Hazard Communication Standard
B. “Right-to-Know”
C. Written Programs
D. A Revised Standard (GHS)
E. What SCC Needs to Do and When
F. Departmental Written HCS Program

Section 3 – Chemical Emergency Spill Plan
A. Purpose and Scope
B. General Operating Procedure
C. Emergency Phone Numbers
D. Storage Facilities
E. Local Assistance
F. Spill Prevention, Control and Countermeasure Plan
G. Sinclair Police First Responder Training
H. Evacuation
I. Spill Control
J. Advisement
K. Clean-up
L. Basic Cleanup Procedures
M. Broken Mercury Thermometer or Small Mercury Spill
N. Large Mercury Spill
O. EPA Recommendations for Clean-up of a Broken Fluorescent Light Bulb

Section 4 – Chemical Inventory Management
A. Purchases
B. Donations
C. Inventory Rotation
D. Receiving and Inspection
E. Proper Storage
F. On Campus Transportation and Packaging
Section 5 – Hazard Classification
A. Health Hazards
B. Physical Hazards
C. Environmental Hazards
D. OSHA Defined Hazards
E. Hazards Not Otherwise Classified (HNOC)

Section 6 – Written Hazard Communication Program
A. Checklist for Your Written Program Compliance
B. What is the Written Program?
C. What Should the Plan Contain?
 1. Chemical Inventory List
 2. Material Safety Data Sheet or Safety Data Sheet
 3. Labels and Other Forms of Warning
 4. Training
 5. Employee Exposure and Medical Records
D. Sample Hazardous Communication Program Plan
E. Sample Letter Requesting an SDS

Section 7 – Information and Training
A. Purpose of Training
B. Effective Training
C. Who Must Be Trained?
D. What the Training Must Include
E. Training Resources

Section 8 – Labels and Forms of Warning
A. Container Labels
B. Better Communication
C. Things to Look for on the Container Label:
 1. Pictogram
 2. Signal Word
 3. Hazard Statement
 4. Product Identifier
 5. Precautionary Statement
 6. Supplier Information
D. Sample Label

Section 9 – Safety Data Sheets (Critical Information)
A. Definition
B. Requirements
C. Safety Data Sheets for the Globally Harmonized System (GHS):
 • Sections 1 – 16
Section 10 – Bloodborne Pathogen Exposure Control Plan
A. Exposure Control Plan Title Page
B. Exposure Determination
C. Methods of Compliance
D. Hepatitis B Vaccinations
E. Hazard Communication and Emergency Response
F. Information and Training
G. Training Records
H. Medical Records
I. Sharps Injury Log

Section 11 – Typical Lab Safety Manual
A. Introduction
B. Rules and Regulations
C. Emergency Response
D. Self Protection in the Lab
E. Chemical Spills
F. Waste Disposal
G. Waste Minimization
H. Compressed Gas Cylinders
I. Peroxide Issues
J. Electrical Hazards
K. High Temperatures
L. Instructor Responsibility
M. Student Responsibility
N. Right-to-Know

Section 12 – Regulated Waste
A. Regulatory Agency
B. Regulated Waste Types
C. College Policy for Compliance
D. Waste Identification
E. Chemical Waste Separation
F. Storage of Chemical Waste
G. Packaging and Shipping of Chemical Waste for Disposal
H. Infectious Waste Disposal

Section 13 – Petroleum Storage Tanks
A. Above Ground and Below Ground Storage Tank Manuals
B. Spill Prevention, Control and Countermeasure Plan

Section 14 – 29 CFR 1910.1030 Bloodborne Pathogens

General Information

A. **Purpose of the Hazardous Materials Management Guideline**

This guideline or manual has been developed to increase awareness and to clarify responsibility for safe handling, use, transportation, storage and disposal of hazardous materials and wastes at Sinclair Community College [Dayton and Satellite Campuses] and the procedures through which it will be put into effect or implemented by the various college departments.

It is important that each department of the college develop and maintain methods and procedures necessary to conform to the environmental, health and safety system of this institution.

It is the intent of this guideline to provide each department with the necessary information, assistance, and coordination for complete compliance and understanding to satisfy the intent of the law.

B. **Procedure for Revision and Additions**

Any recommendations for revision or additions should be sent to the Director of Public Safety for consideration.

The Director will instruct the Safety Coordinator to make the necessary revisions. Once assured that no conflicts exist with the law, revisions will be made to the intranet version at our.Sinclair.

It is to be noted here that modifications to the regulatory law by the governing agencies will compel periodic adjustments.

C. **Who to Call for Assistance**

- Training – Safety Coordinator
- Hazardous Waste – Assistant Director of Facilities Management
- Chemical spill – Sinclair Police or Director of Facilities Management
- Medical Emergency - Sinclair Police.\(^1\)
- Emergency Response – Sinclair Police
- Employee safety complaints - Department Supervisor or Safety Coordinator.\(^2\)
- Occupational related medical examinations or immunizations - see your Chairperson, Manager or Supervisor, or Human Resources.\(^3\)
- Accident Corrective Action Report – our.Sinclair / College Forms / Public Safety.
- Accident & Illness Report – our.Sinclair / College Forms / Public Safety.

\(^1\) The employee’s supervisor may complete an Accident & Illness Report Form for minor injuries that do not require medical attention.

\(^2\) Employee complaints: See [SAFETY AND HEALTH PROTECTION ON THE JOB](http://example.com) poster located in the Human Resources office or in Section 105a of the Employee Safety Manual.

\(^3\) All occupational related medical records must be sent to Human Resources for retention.
D. **College Policy**

It is the policy of Sinclair Community College to comply with all federal, state and local laws pertaining to hazardous materials.

For the purposes of this policy, hazardous materials include purchased chemicals and supplies which can create a chemical exposure hazard, hazardous materials which are no longer used, materials which have been designated as special or hazardous waste, and materials which have been identified under the Bloodborne Pathogen or Tuberculosis Regulations to be infectious or potentially infectious.

All Sinclair Community College employees working with hazardous materials shall endeavor to protect the environment and the health of other employees, students, visitors, and the community from unnecessary exposure. Care should be taken to identify and reduce the past, present and potential future risks of any hazardous material on site.

Employees should continue to identify and evaluate exposed hazardous materials and proposed activities for the risks associated with these materials. Consideration must be given to minimizing the use of materials containing hazardous components.

SCC Board of Trustees resolution adopted on April 13, 1993

E. **Roles and Responsibility**

- **Sinclair Police** – Activates an emergency response.
- **Director of Public Safety** – Police Chief and Incident Commander.
- **Assistant Director of Facilities Management** – Provide chemical and infectious waste disposal coordination. Provide spill and final cleanup as needed.
- **Safety Coordinator** – College workplace, laboratory and classroom safety agent.
- **Chairpersons** – Ensure faculty and students understand how to work with chemicals safely. Provide laboratory workers with appropriate engineering controls and personal protective equipment. Provide specific safety training, as needed. Maintain a Material Safety Data Sheet file for all chemicals in inventory.
- **Managers and Supervisors** – Oversee safe chemical products use by employees. Provide training prior to exposure to hazard. Maintain a Material Safety Data Sheet file for all chemicals in inventory.

F. **Emergency Response**

- **Dayton Campus** – Call Sinclair Police at 2700 or 911 from campus land-line phone.
- **Satellite Campuses** – Call 911 local Police or Fire Department.

G. **Terms and Definitions**

- **Bloodborne Pathogen** – Pathogenic microorganisms that are present in human blood that can infect and cause disease in persons who are exposed to human blood or other human bodily fluids containing these pathogens.
- **Hazardous Material** – A hazardous material for the purpose of this plan and as defined by the United States Environmental Protection Agency (USEPA), is any physical, biological, or chemical item that has the potential to cause harm to living organisms or the environment.
H. Regulatory Authority and Related Programs

Hazardous Materials are defined and regulated in the United States primarily by laws and regulations administered by the United States Environmental Protection Agency (EPA), Occupational Safety and Health Administration (OSHA), Department of Transportation (DOT), Department of Homeland Security (DHS), Drug Enforcement Agency (DEA), and Nuclear Regulatory Commission (NRC). In addition, the use, storage, and disposal of hazardous materials are within the jurisdiction of the Ohio EPA and are regulated by community right-to-know laws, building and fire codes, and emergency preparedness requirements. The federal Resource Conservation and Recovery Act (RCRA) give EPA the authority to control hazardous waste from producer to final disposal. This includes generation, transportation, treatment, storage, and disposal of hazardous waste. RCRA also sets forth a framework for management of non-hazardous solid waste.
Bloodborne Pathogen Exposure Control Plan

A. Exposure Control Plan Title Page

1. Department information

 Date: ______

 Department Name ___

 Building ______

 Room ______

2. Person with authority and responsibility for the bloodborne exposure plan

 Department contact person _________________________

3. Exposure-control plan introduction

 a. This plan is designed to help identify, minimize and/or eliminate risk from exposure to potentially infectious materials to which one may be exposed during employment.
 b. Certain diseases can be transmitted from an infected individual to you by contact with blood or other bodily fluids. These diseases include, but are not limited to, hepatitis virus (HBV), human immunodeficiency virus (HIV) and hepatitis C virus (HCV).
 c. Protection requires:
 • Learn what tasks may result in exposure;
 • Follow the work routines established by this plan;
 • Report any incidents involving exposure;
 • Report any violations of the requirements of this plan; and
 • Assist co-workers in understanding and complying with this plan’s requirements.

4. Occupational Exposure: Occupational exposure means reasonably anticipated contact between your skin, eye or mucous membranes; piercing of skin; or membrane contact with blood, bodily fluids or other potentially infectious materials that may occur in the performance of your duties. Occupational exposure from blood includes all forms of human blood, whether it is liquid, semi-liquid or dried and caked. You must report all occupational exposures to your supervisor or instructor.

5. Standard Precautions: Standard Precautions is an approach to infection control. According to the concept of Standard Precautions, all human bodily fluids are treated as if known to be infectious for HIV, HBC, HCV and other bloodborne pathogens.
B. **Exposure Determination**

1. The following job titles have been identified as positions that have a degree of occupational exposure:
 - Title: __________________________________
 - Title: __________________________________
 - Title: __________________________________
 - Title: __________________________________

 Expand this list as needed with supplemental pages.

2. **Other Potentially Infected Material (OPIM):**
 a. Saliva in dental procedures;
 b. Semen;
 c. Vaginal secretions;
 d. Cerebrospinal fluid (fluid from the head);
 e. Synovial fluid (fluid from a joint);
 f. Pleural fluid (fluid from the lung sac);
 g. Pericardial fluid (fluid from the heart);
 h. Peritoneal fluid (fluid from the abdomen);
 i. Amniotic fluid (fluid from a pregnant uterus);
 j. Any bodily fluid that is visibly contaminated with blood, such as saliva or vomit;
 k. All bodily fluids in situations where it is difficult or impossible to differentiate between bodily fluids;
 l. Any unfixed tissue or organ, other than intact skin, from living or dead human;
 m. Cells or tissue cultures, organ cultures, culture media or other solutions containing known or suspected HIV, HBC or HCV; and
 n. Blood, organs or other tissues from experimental animals infected with HIV, HBC or HCV.

3. The following tasks and procedures involve potential occupational exposure. Employees performing these tasks and procedures are at risk for occupational exposure:
 - Task or procedure: __
 - Task or procedure: __
 - Task or procedure: __
 - Task or procedure: __

 Expand this list as needed with supplemental pages.
C. **Methods of Compliance**

1. **Standard Precautions**

 Standard Precautions is an approach to infection control. According to the standard precautions concept, all human blood and other bodily fluids as well as unfixed tissue and organs other than skin are treated as if known to be infectious for HIV, HBC, HCV and other bloodborne pathogens.

2. **Work Practice Controls**

 a. **Hand washing**

 Wash hands and any other exposed skin with soap and water or flush mucous membranes with water immediately following contact with blood or OPIM. If hand washing facilities are not readily accessible, use antiseptic towelettes. Wash hands after removing gloves or other personal protective equipment.

 b. **Disposable needles and other sharp instruments**

 Contaminated disposable sharp instruments must be placed in appropriate containers until proper disposal. These containers must be:

 i. Puncture resistant;

 ii. Labeled “biohazard” and color coded red;

 iii. Leak-proof on the sides and bottom; and

 iv. Designed to prevent reaching into containers.

 c. **Employee personal actions**

 Eating, drinking, smoking, applying cosmetics and handling contact lenses are prohibited in the lab.

 All procedures involving blood and OPIM must be performed to minimize splashing, spraying, spattering and generation of droplets of these substances.

 Mouth pipetting or suctioning is prohibited.

 d. **Handling specimens**

 Specimens of blood or OPIM must be placed in a container that prevents leakage during collection, handling, processing, storage, transport or shipping. Containers must be black on red labeled “biohazard.” Containers must be sealed prior to being stored, transported or shipped.
3. Personal Protective Equipment (PPE)

a. Includes: gloves, gowns, laboratory coats, face shields, mouthpieces, resuscitation bags, pocket masks, etc.

Remove all PPE prior to leaving the work area. Place used PPE in designated containers.

____________________________ is responsible for cleaning, laundering and disposing of contaminated PPE.

All PPE will be provided in correct fit sizes.

b. Gloves

Gloves must be worn when it is anticipated contact with blood or OPIM could happen.

Disposable gloves may not be washed or decontaminated for reuse. Contaminated gloves must be disposed of as regulated waste.

c. Masks, Eye Protection and Face Shields

To protect against eye, nose or mouth exposure, wear such devices as goggles, or glasses with solid side shields, or chin-length face shields when ever splashes, spray, spatter or droplets or OPIM may be generated.

d. Gowns, Aprons and Other Protective Body Clothing

Appropriate protective clothing such as, gowns, aprons, lab coats, clinic jackets, or similar outer garments must be worn when it is possible that splashes, spray, spatter or droplets or OPIM may be generated.

e. Surgical Caps, Hoods and Boots

Surgical caps or hoods and/or shoe covers or boots must be worn when cross contamination is possible.

f. Standard PPE Requirements:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>PPE Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. **Housekeeping**

All equipment and working surfaces must be decontaminated with disinfect after completion of each procedure or on a routine schedule.

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
<th>Method</th>
<th>Person's name</th>
<th>Job title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expand this list as needed with supplemental pages.

5. **Regulated Waste**

Regulated (Infectious) Waste is liquid or solid or semi-liquid blood or OPIM; contaminated items that would release blood or OPIM in a liquid or semi-liquid state if compressed; items caked with dried blood or OPIM that is capable of releasing these materials during handling; contaminated sharps; and pathological and microbiological waste containing blood or OPIM. Regulated waste includes medical waste regulated by OHIO ENVIRONMENTAL PROTECTION AGENCY, Division of Materials and Waste Management.

Division of Materials Waste Management
P.O. Box 1049, Columbus, OH 43216-1049
Phone: (614) 644-2621 Fax: (614) 728-5315
Emergency Response Hotline (800) 282-9378

a. **Discarding and Containing Contaminated Sharps**

Discard contaminated sharp instruments immediately in containers that are:

i. Closable;

ii. Puncture resistant

iii. Leak-proof on sides and bottom, and

iv. Color-coded red and labeled (“biohazard” in a manner that distinguishes the container.
During use, containers for contaminated sharp instruments must be:
 i. Easily accessible and located as close as possible to the area where sharp
 instruments are used or can be reasonable anticipated to be found;
 ii. Maintained upright throughout use; and
 iii. Replaced routinely and not over filled.

In this facility, containers for contaminated sharp instruments are located:

When moving containers of contaminated sharps from the usage area, the container must
be:
 i. Closed prior to removal or replacement to prevent spillage or exposing the contents
 during handling, storage, transport or storage.
 ii. Placed in a secondary container if leakage is possible. The secondary must meet the
 same specifications and be similar to the primary container. Do not move contents
 from one primary container to another.

Reusable containers must not be opened, emptied or cleaned in any manner that would
expose worker to risk of puncture injury.

b. Other Regulated Waste

Other regulated waste means:
 i. The following human bodily fluids: semen, vaginal secretions, cerebrospinal fluid,
 synovial fluid, pleural fluid, pericardial fluid, peritoneal fluid, amniotic fluid, saliva in
 dental procedures, any other bodily fluid that is visibly contaminated with blood
 such as saliva or vomitus, and all other bodily fluids in situations where it is difficult
 or impossible to differentiate between bodily fluids such as emergency response;
 ii. Any unfixed tissue or organ (other than intact skin) from a human (living or dead); and
 iii. HIV-containing cell or tissue cultures, organ cultures, HIV-, HBV-, or HCV- containing
 culture medium or other solutions; and blood, organs and other tissues from
 experimental animals with HIV, HBC, or HCV.

Distinguish these and other potentially infectious waste from general refuse and garbage by
use of Biohazard labeled containers or bags.

Disposal requirements include placing waste in containers that are:
 i. Closable;
 ii. Constructed to contain all contents and prevent leakage of fluids during handling,
 storage, transport or shipping;
 iii. Color-coded “red” and labeled “biohazard” to properly identify the container as
 being used for potentially contaminated medical waste; and
iv. Closed prior to removal to prevent spillage or exposure of contents during handling, storage, transport or shipping.

If the regulated waste container becomes contaminated on the outside, place the container in a second container that meets the same standards as the primary container. Do not move the contents of one container to another.

6. Laundry Procedure

The following provisions are specified to minimize exposures when handling contaminated laundry:
 a. Those persons handling contaminated laundry must be trained.
 b. Handle laundry as little as possible with a minimum of agitation.
 c. Laundry must be containerized or bagged at the location where it was used. It should not be sorted, washed or rinsed in the location of use.
 d. Contaminated clothing should be disinfected using bleach by someone trained in the handling of medical waste.
 e. Place and transport laundry in bags labeled or color-coded to identify it as a contaminated material.
 f. Whenever contaminated laundry is wet and presents a likelihood of soak-through or leakage, place it in separate plastic bags.
 g. Employees who have contact with contaminated laundry must wear protective gloves and other appropriate PPE.

D. Hepatitis B Vaccinations

1. Hepatitis B Vaccination

 a. The Hepatitis B vaccine and vaccination series is available to all employees who have occupational exposure at no cost to the employee.
 b. Employees have the right to decline the vaccination. However, they must sign a written statement that they were given an opportunity and that they declined. Should the employee change their mind and want the vaccination at a later date, the vaccination will be provided at no cost to the employee.
2. Typical Waiver for hepatitis B vaccination:

I understand that due to my occupational exposure to blood or Other Potentially Infectious Materials (OPIM), I may be at risk of acquiring hepatitis B virus (HBV) infection. I have been given the opportunity to be vaccinated with hepatitis B vaccine at no cost to myself. However, I decline hepatitis B vaccination at this time. I understand by declining this vaccine, I continue to be at risk of acquiring hepatitis B, a serious disease. If in the future I continue to have occupational exposure to blood or OPIM and want to be vaccinated, I can receive the vaccination series at no cost to me.

______________________ ________________________________ ____________________________
Date Employee’s printed name Employees signature

______________________ _________________________________ ____________________________
Date Supervisor printed name Supervisor signature

3. Post Exposure Evaluation and Follow-up

a. The Injured employee must seek immediate emergency medical treatment and complete an Accident Report Form.

b. The Director of Human Resources will take the following action concerning the exposed employee:
 i. Attempt to obtain consent for a HBV and HIV blood test. If the exposed individual refuses to give consent, it must be documented in writing. The exposed employee has 90 days to change their mind and consent to a blood test.
 ii. Schedule the exposed employee for a HBV and HIV blood test.
 iii. Give the results of the blood test to the exposed employee.
 iv. Schedule the exposed employee for a medical evaluation and follow-up with a physician.
 v. The physician must be provided with the following information:
 • A copy of the OSHA 1910.1030 regulations,
 • The employee job description,
 • Documentation of the route of exposure and circumstances under which it occurred,
 • Results of the source person’s blood test, and
 • Any other medical information concerning the employee’s medical status.
 vi. The Director of Human Resources shall verify that the physician provides a written opinion concerning the employee’s medical condition, resulting from exposure to blood or other body fluids, within 15 days of the evaluation.
 vii. The Director of Human Resources shall arrange for the employee to receive the Hepatitis B vaccination if the physician indicates that it is necessary.
 viii. The Director of Human Resources must keep all post exposure medical evaluations and test records for the duration of employment plus 30 years.
c. Incident Report for a Student injured during clinical rotations:
 i. Faculty must ensure the student receives appropriate emergency care.
 ii. Complete the Emergency Room Insurance Form for Student Injury at Clinical Facility and submit it to the Chairperson’s office, who will forward a copy to the Dean’s office. **Note:** The top portion of the form should be completed by the faculty member.
 iii. Secure an ITT Hartford insurance form from the Business Services Office.
 iv. Ensure the student completes the insurance form; it is signed, and returned to the Business Services Office, with a copy to the Dean’s office.

E. **Hazard Communications and Emergency Response**

1. Warning Labels and Signs
 a. “Biohazard” warning labels must be attached or affixed to:
 i. Contaminated equipment;
 ii. Containers of regulated waste;
 iii. Refrigerators and freezers containing blood or Other Potentially Infectious Material (OPIM); and
 iv. Other containers used to store, transport or ship blood or OPIM

 Sample Label:

 ![Biohazard Label]

 b. Items that require warning labels include, but are not limited to:
 i. Refrigerators/freezers;
 ii. Laundry bags;
 iii. Disposable needles/sharp instruments containers;
 iv. Reusable sharp instruments containers;
 v. Contaminate pieces of equipment (or portions thereof);
 vi. Containers for handling specimens; and
 vii. Containers of regulated waste.

 c. Exceptions to these labeling requirements are permitted when:
 i. Red bags or red containers with the biohazard symbol are used in lieu of labels;
 ii. Containers of blood, blood components or blood products are labeled as their contents and have been released for transfusion or other critical use and are so identified;
 iii. Individual containers of blood or OPIM are placed together in a labeled container during storage, transport, shipment or disposal; or
 iv. Regulated waste has been decontaminated.
2. Steps to Take in an Emergency

 a. An emergency is a situation in which an employee is exposed to potentially infectious material on any exposed/unprotected part of his/her body, regardless of whether the exposed body part has any known cuts, scratches, open lesions or exposed mucous membranes.

 b. If an emergency involving blood or OPIM should occur, the following actions should be taken:
 i. The affected employee must immediately clean the blood or OPIM from his/her exposed body with soap and water followed by a disinfectant. If eyes are exposed, they should immediately be flushed with water for at least 15 minutes.
 ii. The employee must report the incident as soon as possible to his/her supervisor.
 iii. An Accident Report must be completed and sent to the Safety Coordinator.
 iv. In the event the employee is stuck or cut by a contaminated needle or sharp instrument, emergency medical treatment should be sought immediately.
 v. If emergency medical care is imminent call Sinclair Police.

F. Information and Training

1. General

 a. Initial and periodic training is required to be provided by the employer for all employees who may have occupational exposure as a result of their employment:
 i. At time of initial assignment to tasks where occupational exposure may occur; and
 ii. Annually thereafter.

2. Training Content

 a. Training consists of the following elements and materials:
 i. A copy of the OSHA standard supporting the Exposure Control Plan;
 ii. A review of the College Exposure Control Plan;
 iii. An explanation of the Ohio Public Employment Risk Reduction Program (OPERRP);
 iv. A general discussion of applicable bloodborne diseases and transmission;
 v. An explanation of the use and limitations of methods that will prevent or reduce exposures, including appropriate environmental measures, work practice routines and use of personal protective equipment;
 vi. Emergency response procedures;
 vii. An explanation of post-exposure evaluation and follow-up;
 viii. Information on how to handle exposure incidents;
 ix. An explanation of the signs, labels, and/or color-coding used in the practice to identify potentially infectious materials;
 x. Information on the hepatitis B vaccine; and
 xi. Report certain sharps injuries (See part I. of this section).
G. **Training Records**

1. Records pertaining to training programs are maintained by Human Resources for at least three (3) years and include:
 a. The dates of training;
 b. The contents, summary or minutes of each session;
 c. The name and position of the person conducting the training;
 d. Attendance rosters, reflecting the names and job titles of all persons attending.

2. **Record Availability**
 a. All records concerning the exposure control program will be made available upon request to agents from the Ohio Public Employment Risk Reduction Program.
 b. Employee training records are available to the employee.

H. **Medical Records**

1. All medical records will be secured in Human Resources and will remain confidential. Contents of medical records will not be disclosed or reported without the employee’s specific written consent to any person within or outside the College except as may be required by law or for the employee’s well-being.

2. Human Resources will maintain employee medical records for at least the duration of employment plus 30 years.

I. **Sharps Injury Log**

29 CFR 1910.1030, OSHA’s Bloodborne Pathogens standard, in paragraph (h)(5), requires an employer to establish and maintain a Sharps Injury Log for recording all percutaneous injuries in a facility occurring from contaminated sharps. The purpose of the log is to aid in the evaluation of devices being used in healthcare and other facilities and to identify problem devices or procedures requiring additional attention or review. This log must be kept in addition to the injury and illness log required by 29 CFR 1904. The Sharps Injury Log should include all sharps injuries occurring in a calendar year. The log must be retained for five years following the end of the year which it relates. The Log must be kept in a manner that preserves the confidentiality of the affected employee.
Typical Lab Safety Manual

A. Introduction

1) Purpose of the Manual

Teaching in a chemistry lab often yields predictable results. Experimental procedures are written or selected for this very reason. However, it is the unpredictable outcomes that incur hazardous risk to the student or instructor. These risks can be properly mitigated by taking proper safeguards. As an educator, it is your job to address these risks as much as possible without sacrificing the excitement and adventure that students experience during the lab component of a chemistry course. This is often a tough compromise because talking about safety is somewhat mundane and might make chemistry seem exceptionally dangerous.

Anticipating a hazardous situation means thinking about safety before you even enter a lab. In planning an experiment, even an experiment that has been performed many times, you should always take time to identify potential hazards, procedures for dealing with these hazards, and safe, legal procedures for disposing of all materials after the experiment.

Training in emergency procedures is also important, and this training must occur and be understood before the actual lab work begins. Safety is an important and necessary part of the student’s educational process.

B. Rules and Regulations

1) No one may ever engage in lab work after taking medication of substances known to impair judgement, motor skills, memory, alertness or other mental faculties critical for safe lab work.

2) Students enrolled in lab courses may engage in lab work only during the normal scheduled lab hours, and only when an instructor or other lab supervisor is present.

C. Emergency Response

1) Fire Safety: Upon discovery of a fire, alert other occupants by activating the fire alarm as you exit the facility. Fire alarm pull stations are located next to the stairway or outside door exits. Fire extinguishers should only be used by persons experienced in safe fire extinguisher use. Make it your business to learn about proper use of fire extinguishers. Study and learn the locations of fire exits, fire alarms, fire blankets and extinguishers.

2) Medical Emergency: Contact Sinclair Police at 2700 for emergency medical services. Sinclair Police will dispatch police officers to the scene and call the Dayton EMS, if necessary.
Persons requiring emergency medical treatment will be transported by Dayton EMS to a local hospital. The injured or ill person may refuse medical emergency transport by signing a Sinclair Police Transport Refusal card. Sinclair Police will complete the Accident/Illness form.

3) **Minor Injuries:** Report all lab injuries to the instructor in charge of the course. Most all lab injuries require some degree of first-aid attention. Therefore, you must inform your instructor if you have received any injury in the lab. First-aid cabinets contain materials for treating minor cuts and burns. An Accident/Illness Report form must be completed by either the injured or the instructor and sent to Sinclair Police. The forms are available on computer at our.Sinclair/Forms/Public Safety.

4) **Chemical Burns:** For most chemical spills on the body, the area should be immediately flushed with water for at least 15 minutes prior to removal to medical treatment. For skin contact use the sink or emergency shower station. Remove affected clothing and flush for 15 minutes. If chemical is splashed into the eyes, hold the eyes open to the water in the eyewash station and rotate the eyeballs to clear the material from all areas. Be gentle and do not rub your eyes. For persons unable to get to the eyewash station use the portable eye wash bottles. Keep flushing the affected area while calling Sinclair Police for help.

D. Self Protection in the Lab

1) **Eye Protection:** Goggles or other approved protective eyewear must be worn at all times. Normal eyeglasses do not count as safety goggles.

2) **Skin Protection – Shoes:** Closed-toe shoes that are fastened to your feet must be worn at all times. Sandals, flip-flops, and clogs are not advisable.

3) **Skin Protection – Gloves:** It may be necessary for students to wear gloves when handling dangerous chemicals or dangerously hot or cold objects. Otherwise, gloves are not required.

4) **Skin Protection - Clothes:** Safe protective clothing is required. Students should wear inexpensive clothing that covers the body from the tops of the shoulders to the knees. A short-sleeved t-shirt is acceptable, but a tank top is not (bare shoulders). Shirts that leave your mid-section exposed are unacceptable. Since spilled chemicals and broken glass naturally seek their lowest level, we strongly recommend that students cover their legs by wearing long pants.

5) **Long Hair:** Long hair must be tied back securely. Students should not wear loose-fitting items such as baggy clothing or dangling jewelry. Loose dangling items are dangerous because they get caught on apparatus, knock over containers, etc.
6) **Food and Drink**: Students should not bring food or drink into any lab, nor should they store food in a lab or use lab equipment to prepare food. Students should never eat or taste a laboratory reagent.

7) **General Protection – Fume Hoods**: Fume hoods prevent toxic and flammable vapors from entering the lab. In addition, their windows (or sashes) block splashes and flying debris. Any experiment that involves a volatile toxic compound, a flammable compound, or a potentially exothermic reaction, or that requires heating, should be performed in a fume hood with the window positioned low as possible.

8) **Personal Hygiene** – The following personal hygiene rules must be enforced at all times while working in the Chemistry lab:
 - Whenever a chemical has contacted the skin or eyes wash/flush the affected area with copious amounts of water for 15 minutes.
 - Avoid inhalation of chemical fumes unless previously deemed safe. In such case, students should “waft” fumes toward their face and not directly smell fumes from the container.
 - Students should not use the mouth to suction anything; use suction bulbs.
 - No eating, drinking, smoking or application of cosmetics in the lab area.
 - Students should not apply or change contact lenses in the lab.
 - Students should wash with soap and water before leaving the lab.

E. **Chemical Spills**

1) **Acid Spill**: First rinse off any acid that spills on you with copious amounts of water. Second, attend with any acid that spills on the floor or other lab surface, neutralizing the spill with baking soda and notifying the lab instructor. Pour baking soda directly on the spill. Once the bubbling and fizzing stop, wipe up the spill with a sponge (wear gloves) and wash all of the material down the sink. Prevent people from walking through the spill area. Please note there are also specially designed “spill kits” in the lab that can achieve this same result.

2) **Base Spill**: First rinse off any base that spills on you with copious amounts of water. Second, attend with any base that spills on the floor or other lab surface, neutralizing the spill with a dilute acid (such as vinegar or 3M HCI) and notifying the lab instructor. Pour the dilute acid directly on the spill. Periodically test the spill’s pH with pH paper (a pH between 5 and 9 can be considered neutral). Once the spill has been neutralized, wipe up the spill with a sponge (wear gloves) and wash all of the material down the sink. Prevent people from walking through the spill area. Please note there are also specially designed “spill kits” in the lab that can achieve this same result.

3) **Other Chemical Spills**: First attend with material that spills on you. Notify your lab instructor immediately to get information on how to clean up the spill. For some chemicals, water flushing is inadvisable. Your instructor will inform you when you work with one of these chemicals and the antidote procedure.
4) **Mercury**: This is one spill you cannot clean up yourself. Mercury is a toxic liquid. Mercury spills generate an enormous number of tiny droplets that are easily spread around, and special vacuum equipment must be employed. Evacuation of the area is required. Contact Sinclair Police immediately.

F. **Waste Disposal**

1) **Organic Waste**: All organic wastes go in the organic waste jug in the fume hood of the organic lab. Organic waste includes both routinely encountered include organic solids or liquids that is prepared during an experiment and is necessary to properly discard. Waste jars are labeled to identify the proper disposal waste stream.

2) **Acid or Base Waste**: Inorganic acids and bases should be neutralized to bring their pH between 5 and 9. As with acid and base spills, neutralize acid with baking soda, and base with dilute acid. If the neutralized material does not contain one of the metals listed in the next section, rinse the material down the drain. Otherwise, treat the material as a “listed metal waste.”

3) **Listed Metal Wastes**: Solutions containing the following metals cannot go down the sink drain under any circumstances: arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag) and zinc (Zn). Special waste containers will be available to collect each type of metal for proper disposal according to law.

4) **Glass Disposal**: In every lab there is a container placed for glass disposal. All broken glassware, including disposal pipettes, should go into the glass waste box.

G. **Waste Minimization**

1) Minimize mixing hazardous waste with non-hazardous waste, such as water. Do not dilute hazardous waste. Diluting a hazardous waste increases the volume for disposal. Volume is relative to cost for disposal. The only exception is adding water to explosive chemicals to keep them wet. (Probably not an issue for Sinclair)

2) Segregate waste according to waste streams, such as organic solvent waste, photo fixer waste, aqueous waste with organic solvents, aqueous waste with toxic heavy metals, aqueous acidic waste, aqueous basic waste, metallic mercury waste, lubricating oil, formalin, or ethidium bromide.

3) Use only compatible containers for collecting waste.

4) Label all containers to prevent the generation of “unknowns.” Label all stock, transfer, and waste containers appropriately. All containers must show:
• The chemical name in English. It may never be abbreviated.
• Approximate concentrations for each component in a mixture
• The hazards associated with the chemical
• Generator information that includes your name, phone number, the date, and department
• Failure to label the contents can result in very expensive disposal costs since unlabeled containers require special analytical procedures to determine appropriate classification and disposal methods.

5) Ensure that containers are in good condition, closed at all times, stored in cabinets intended for hazardous waste storage, adequately segregated, and inspected regularly.

6) Sinclair Community College retains permanent liability for the management and compliance with the law. The EPA may perform unannounced inspections at any time. Operations that do not meet regulatory requirements can result in substantial penalties.

7) LISTED TOXIC WASTE (among others): The following, among others, cannot go down the sink drains: cyanides, sulfides, azides, and atrazine.

H. Compressed Gas Cylinders

1) Securely fasten all tanks in the upright position with a strap or chain anchored to a bench or wall. Before moving a tank, remove the regulator and replace the protective cap.

2) Only those persons experienced in moving gas cylinders may transport a gas cylinder from one location to another. Always use a special dolly equipped with a cylinder cradle and secure strap mechanism.

3) Determine the appropriate type regulator for a particular gas.

4) Always use a well-ventilated hood if using toxic or corrosive gases.

I. Peroxide Issues

1) Ethers and alcohols are the most commonly used organic solvents. Their reaction with oxygen in air deserves special attention.

2) All containers for ethers and alcohols must be kept well sealed when not in use. A loose stopper allows both a slow evaporation and reaction with oxygen. Consequently the peroxides gradually accumulate in the residue as the volume declines.

3) Date all containers upon opening, as old containers with high peroxide content may explode.
A list of some Peroxidizable Compounds

<table>
<thead>
<tr>
<th>acetal</th>
<th>hexanone (3-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetophenone</td>
<td>hexyne</td>
</tr>
<tr>
<td>amyl acetate</td>
<td>isobutyl alcohol</td>
</tr>
<tr>
<td>chloroethyl ether</td>
<td>isobutyl alcohol</td>
</tr>
<tr>
<td>cyclohexane</td>
<td>isopropyl alcohol</td>
</tr>
<tr>
<td>cyclohexanol</td>
<td>isopropyl ether</td>
</tr>
<tr>
<td>cyclohexanone</td>
<td>methyl crotonate</td>
</tr>
<tr>
<td>cyclohexene</td>
<td>methyl cyclohexane</td>
</tr>
<tr>
<td>cyclopentene</td>
<td>methyl hexyl ketone</td>
</tr>
<tr>
<td>cyclopropylmethyl ketone</td>
<td>methyl isobutyl ketone</td>
</tr>
<tr>
<td>dicyclopentadiene</td>
<td>methylmethoxyacetate</td>
</tr>
<tr>
<td>dimethoxyethane</td>
<td>pentanediol (1,5-)</td>
</tr>
<tr>
<td>dimethoxypropan</td>
<td>pentanol (2-)</td>
</tr>
<tr>
<td>dimethyl-3-pentanol (2,4-)</td>
<td>pentanone (3-)</td>
</tr>
<tr>
<td>dioxane</td>
<td>propanediol (1,3-)</td>
</tr>
<tr>
<td>ethylene glycol dimethyl ether</td>
<td>sec-buty alcohol tetrahydrofuran</td>
</tr>
<tr>
<td>ethyl ether</td>
<td></td>
</tr>
<tr>
<td>furan</td>
<td></td>
</tr>
<tr>
<td>hexachlorobutadiene</td>
<td></td>
</tr>
</tbody>
</table>

J. Electrical Hazards

1) All laboratory equipment operated on 120 volts AC from standard electrical outlets (receptacles) must be equipped with grounded cords and plugs.

2) All electrical outlet circuits within reach of plumbing equipment must be protected by a ground fault circuit interrupter (GFCI) device. All GFCI protectors must be tested annually by Facilities Management for proper operation.

3) All electrical cords must be routinely inspected for breaks in insulation and ground integrity. The inspections will be done by the class instructor or lab technician. Students should report any unsafe conditions to the instructor.

4) Significant physical harm or death may result from the misuse of electricity. All electrical wiring and wiring installations must conform to standard safety practices (National Electrical Code).

K. High Temperatures (Hot Plates, Heating Mantles and Furnaces)

1) Unsafe operation at high temperatures can cause burns, i.e., explosions (from trapped steam or gasses), detonations (from unstable compounds or mixtures, etc.), and fires.

2) When you switch off a hotplate do not forget while it is still hot it is a hazard to you and others. Label it HOT so the next person does not suffer an accidental burn.
L. **Instructor Responsibility**

1) As the instructor of a lab course, it is one of your important job responsibilities to address safety at the beginning and throughout the academic term. Discuss with the contents of *Sinclair Chemistry General Laboratory Information* and have them sign this document or a similar one to prove you have discussed lab safety with them. Keep their signature on file for the duration of the quarter.

2) Wear eye protection while teaching in the lab.

3) Follow college safety policies, programs and procedures.

4) Consistently enforce all safety rules.

5) Call Sinclair Police to report injury accidents. Ensure that an incident report form has been filled out and sent to Sinclair Police.

6) Inspect lab areas to detect unsafe conditions and practices.

7) Instruct students in the use of Material Safety Data Sheets.

M. **Student Responsibility**

1) Learn and follow all safety rules in the lab. Patterns exhibiting a failure to do so place others at risk and become a matter of student misconduct and should be brought to the attention of counseling services or the department chair.

2) Before starting any chemical experiment make sure you know exactly what is to be done and how to do it safely.

3) It is mandatory to wear goggles or safety glasses for eye protection while working in the lab. Regular glasses are unacceptable. Sometimes it is necessary to wear a face shield when splashes into the face are possible.

4) Wear additional personal protection equipment that may be needed while working in the lab.

5) Make sure all lab equipment is in safe operational condition before using. Report unsafe conditions to your instructor.

6) All experiments that generate fumes or cause exposure by inhalation must be done inside a fume hood. Make sure the fume hood is moving air properly. Adjust sash properly. Do not remove sash stops.

N. **Right-to-Know Program as a Responsibility of the Chemistry Department**

1) All containers must be labeled including stock items and hazardous waste.
2) All chemicals must have a Material Safety Data Sheets (MSDS). The MSDS are on file with the laboratory manager and are available to students upon request.

3) Make the MSDS for each chemical available to all students and employees that could be exposed to the chemical.

O. Acknowledgement

Please sign below:

1. You have read the Manual for Chemical Safety in the Lab (pages 1-8)

2. You agree to do your part in maintaining the safety of Sinclair’s Chemistry Labs in accordance with these policies (procedures?)

__ ___________________________________
Signature Date
Regulated Waste

A. Regulatory Agency

1. The Ohio Environmental Protection Agency, Department of Materials and Waste Management implements Ohio’s solid waste, infectious waste, hazardous waste, and construction and debris programs.

2. The Resource Conservation and Recovery Act (RCRA) has established a "cradle to grave" system for the handling of hazardous waste from generation through disposal. Ohio EPA enforces the regulation.

B. Regulated Waste Types

1. There are three types of waste that require special handling and have disposal requirements at Sinclair Community College. These are:
 a. Special Waste (primarily petroleum products)
 b. Hazardous Waste (chemical)
 c. Infectious Waste (biological)

2. There are special legal requirements for management and disposal of these wastes, and serious penalties and consequences can be brought on the College for not complying.

C. College Policy for Compliance

1. Sinclair Community College has stated in Section 1, D. of this guideline the intent to comply with all applicable federal and state regulations.

2. All Sinclair Community College Departments generating hazardous waste, special waste or infectious waste shall identify, label, temporarily store and dispose legally any generated hazardous waste or infectious waste. The Assistant Director for Facilities Management must be notified when departments are in need of disposal assistance.

3. Hazardous waste must be stored, properly packaged, labeled and paperwork (manifest) completed prior to internal movement for disposal shipment. The College consultant will determine "best way" for shipment.

4. Hazardous materials, after proper packaging, will be transported for shipping by Facilities Management personnel. Notification by the waste generator departments to Facilities Management initiates the disposal process.
D. Waste Identification

1. Chemical Hazardous Waste – According to the Environmental Protection Agency (EPA), a chemical waste is considered to be hazardous if the waste exhibits any of the following characteristics:
 a. **Ignitability** – A substance is considered to be ignitable if it exhibits any of the following properties:
 i. It is a liquid, other than an aqueous solution containing less than 24% alcohol by volume and has a flash point less than 60 degrees Celsius (140 degrees Fahrenheit), as determined by the Pensky – Martens Closed Cup Tester.
 ii. It is not a liquid and is capable, under standard temperature and pressure, of causing fire through friction, absorption of moisture or spontaneous chemical changes and, when ignited, burns so vigorously and persistently that it creates a hazard.
 iii. It is a flammable compressed gas.
 iv. It is an oxidizer such as chlorates, permanganates, inorganic peroxides, or nitrates that yield oxygen readily to stimulate the combustion of organic matter.
 b. **Corrosivity** – A substance is considered to be corrosive if it exhibits any of the following properties:
 i. It is aqueous and has a pH less than or equal to 2 or greater than or equal to 12.5, as determined by a pH meter using either an EPA or equivalent test method.
 ii. It is a liquid and corrodes steel (SAE 1020) at a rate greater than 6.55 mm/year at 55 degrees Celsius.
 c. **Reactivity** – A substance is considered to be reactive if it exhibits any of the following properties:
 i. It is normally unstable and readily undergoes violent change without detonating.
 ii. It reacts violently with water.
 iii. It forms potentially explosive mixtures with water.
 iv. When mixed with water, it generates toxic gases, vapors, or fumes in a quantity sufficient to present a danger to human health or the environment.
 v. It is a cyanide or sulfide bearing waste which, when exposed to pH conditions between 2 and 12.5, can generate toxic gases, vapors, or fumes in a quantity sufficient to present a danger to human health or the environment.
 vi. It is capable of detonation or explosive reaction if it is subjected to a strong initiating source or if heated under confinement.
 vii. It is readily capable of detonation or explosive decomposition or reaction at standard temperature and pressure.
 viii. It is a forbidden explosive as defined by 49 CFR 173.51, or a Class A explosive as defined by 49 CFR 173.53, or a Class B explosive as defined in 49 CFR 173.88.
 d. **Toxicity** Characteristic Leaching Procedure (TCLP) – This characteristic identifies wastes from which, certain toxic materials could be leached into groundwater supplies and is defined by prescribed test procedure for water extraction of the waste. The extract is analyzed for concentrations of eight elements or ions; Arsenic, Barium, Cadmium, Chromium (VI), Lead, Mercury, Selenium, and Silver; and the thirty-one organic substances listed herein:
2. **Infectious Waste** – Infectious waste includes the following:

 a. **Laboratory Waste**
 i. Waste cultures and stock agents that are generated from a laboratory and are infectious to humans.
 ii. Discarded contaminated items used to inoculate, transfer, or otherwise manipulate cultures of stocks of agents that are infectious to humans.
 iii. Wastes from the production of biological agents that are infectious to humans.
 iv. Discarded live or attenuated vaccines that are infectious to humans.
 v. Wastes that originates from clinical or research laboratory procedures involving communicable infectious agents unless such waste has been properly decontaminated by an approved process (e.g. autoclaving)

 b. **Human Blood**
 i. Human blood and blood components and products made from human blood.
 ii. Solid waste saturated with dripping human blood or blood products (e.g. contaminated items that could release blood in a liquid or a semi-liquid form, if compressed).
 iii. Human blood products include serum, plasma, and other blood components.

 c. **Regulated Human Body Fluids**
 i. Blood and blood components.
 ii. Cerebrospinal fluid, synovial fluid, peritoneal fluid, pericardial fluid, amniotic fluid, semen, pus, drainage, vaginal secretions.
 iii. Any body fluids that are visibly contaminated with blood, that are in containers or that drip freely or could be released in a liquid or semi-liquid state from soaked solid wastes items.

 d. **Research Animal Waste**
 i. Carcass, body parts, and blood derived from animals knowingly and intentionally exposed to agents that are infectious to humans; and/or accidentally or naturally
infected with agents that are infectious to humans for the purpose of research, diagnostic, production of biological and/or testing of pharmaceuticals.

e. **Sharps**
 i. Needles and syringes.
 ii. Surgical, scalpel and razor blades.
 iii. Pasteur pipettes capillary tubes.
 iv. Slides and covers.
 v. Shards of contaminated glass and any other sharp items derived from human or animal patient care, blood banks, laboratories, mortuaries, research facilities and industrial operations.

 Sharps are considered infectious waste whether contaminated with infectious agents or not.

E. **Chemical Waste Separation**

1. Hazard waste regulation requires that chemical waste must be separated from incompatible materials. Additionally, the fire code requires that incompatible materials must be stored separately.

2. Chemicals can usually be grouped into generic hazard groups, with the more common groups being flammable/combustible, acid, oxidizer and reactive.

3. **RCRA’s Chemical Waste Compatibility List**

 The mixing of Group A materials with Group B materials may have the potential consequences noted.

<table>
<thead>
<tr>
<th>Group 1-A</th>
<th>Group 1-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene sludge</td>
<td>Acid sludge</td>
</tr>
<tr>
<td>Alkaline caustic liquids</td>
<td>Acid and water</td>
</tr>
<tr>
<td>Alkaline cleaner</td>
<td>Battery acid</td>
</tr>
<tr>
<td>Alkaline corrosive liquids</td>
<td>Chemical cleaners</td>
</tr>
<tr>
<td>Alkaline corrosive battery fluid</td>
<td>Electrolyte, acid</td>
</tr>
<tr>
<td>Caustic wastewater</td>
<td>Etching acid liquid or solvent</td>
</tr>
<tr>
<td>Lime sludge and other corrosive alkalize</td>
<td>Pickling liquor & other corrosive acids</td>
</tr>
<tr>
<td>Lime wastewater</td>
<td>Spent acid</td>
</tr>
<tr>
<td>Lime and water</td>
<td>Spent mixed acid</td>
</tr>
<tr>
<td>Spent caustic</td>
<td>Spent sulfuric acid</td>
</tr>
</tbody>
</table>

Potential consequences: Heat generation; violent reaction

<table>
<thead>
<tr>
<th>Group 2-A</th>
<th>Group 2-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Any waste in Group 1-A or 1-B</td>
</tr>
<tr>
<td>Beryllium</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td></td>
</tr>
</tbody>
</table>
Sodium
Zinc power
Other reactive metals and metal hydroxides

Potential consequences: Fire or explosion; generation of flammable hydrogen gas

<table>
<thead>
<tr>
<th>Group 3-A</th>
<th>Group 3-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohols</td>
<td>Any concentrated waste in Groups 1-A or 1-B</td>
</tr>
<tr>
<td>Water</td>
<td>Calcium</td>
</tr>
<tr>
<td></td>
<td>Lithium</td>
</tr>
<tr>
<td></td>
<td>Metal hydrides</td>
</tr>
<tr>
<td></td>
<td>Potassium</td>
</tr>
<tr>
<td></td>
<td>SO$_2$Cl$_2$, SOCl$_2$, PCl$_3$, CH$_3$SiCl$_3$</td>
</tr>
<tr>
<td></td>
<td>Other water-reactive waste</td>
</tr>
</tbody>
</table>

Potential consequences: Fire, explosion, or heat generation; generation of flammable or toxic gases

<table>
<thead>
<tr>
<th>Group 4-A</th>
<th>Group 4-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohols</td>
<td>Concentrated Group 1-A or 1-B wastes</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>Group 2-A wastes</td>
</tr>
<tr>
<td>Halogenated hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>Nitrate hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>Other reactive organic compounds & solvents</td>
<td></td>
</tr>
</tbody>
</table>

Potential consequences: Fire, explosion, or violent reaction

<table>
<thead>
<tr>
<th>Group 5-A</th>
<th>Group 5-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spent cyanide and sulfide solutions</td>
<td>Group 1-B wastes</td>
</tr>
</tbody>
</table>

Potential consequences: Generation of toxic hydrogen cyanide or hydrogen sulfide gas

<table>
<thead>
<tr>
<th>Group 6-A</th>
<th>Group 6-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorates</td>
<td>Acetic acid and other organic acids</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Concentrated mineral acids</td>
</tr>
<tr>
<td>Chlorites</td>
<td>Group 2-A wastes</td>
</tr>
<tr>
<td>Chromic acid</td>
<td>Group 5-A wastes</td>
</tr>
<tr>
<td>Hypochlorites</td>
<td>Other flammable and combustible wastes</td>
</tr>
<tr>
<td>Nitrates</td>
<td></td>
</tr>
<tr>
<td>Nitric acid, fuming</td>
<td></td>
</tr>
<tr>
<td>Perchlorates</td>
<td></td>
</tr>
<tr>
<td>Permanganates</td>
<td></td>
</tr>
<tr>
<td>Peroxides</td>
<td></td>
</tr>
<tr>
<td>Other strong oxidizers</td>
<td></td>
</tr>
</tbody>
</table>

Potential consequences: Fire, explosion, or violent reaction
F. **Storage of Chemical Waste**

1. Containers of hazardous waste may be stored in an area of a laboratory or facilities operation near the point of generation. The area must be controlled by the principle administrator or workers generating the waste. State and federal regulations stipulate how waste generators store chemical waste and require the following:
 a. Any container used to store hazardous waste must be labeled with the words “hazardous waste” and type of waste as soon as the accumulation begins.
 b. Be sure the container is compatible with chemical waste. Use containers that are made of or lined with materials that will not react with, and are otherwise compatible with the hazardous waste to be stored.
 c. Waste containers must be closed at all times, except when being filled.
 d. Be sure that containers in the waste area do not leak. Consider secondary containment, such as a tray, larger container or basin.
 e. No more than one (1) quart of an acutely hazardous waste (P-listed wastes) or 55 gallons of other hazardous wastes may be stored (per waste stream) in the waste storage areas. **If this threshold quantity is reached, waste must be sent to an off-site authorized facility within three (3) days.** Contact Facilities Management immediately.
 f. Like any chemical storage in the laboratory or work area, be sure to segregate the containers according to the type of waste.
 g. Waste stored near drains (floor, sink, cup sink) Must have secondary containment.

G. **Packaging and Shipping of Chemical Waste for Disposal**

1. Lab packing is a systematic approach to identifying, labeling and packaging chemical waste:
 a. A **completed "Confidential Waste Profile" must be submitted to the disposal site for approval.** The waste profile is a list of the chemicals to be disposed, grouped by their waste disposal characteristics.
 b. Once the waste is approved by the disposal company, a profile number will be assigned. Sinclair College or their agent will receive an approval letter for the shipment. **This letter is needed prior to scheduling the waste shipment. Unapproved waste shipments will not be accepted.**
 c. DOT approved containers must be packed so that inside containers can be transported without risk of breakage and with sufficient absorbent material to absorb all liquid waste if a container were to break. The absorbent material acceptable for packaging is vermiculite. **Saw dust is to be used for lab packs that have a treatment standard of incineration.**
 d. To properly package a drum, the following procedure is required:
 a. Place a four to six inch layer of absorbent material in the drum bottom.
 b. Loosely place a single layer of containerized waste on the absorbent layer with a one to two inch spacing between around each container.
 c. Cover the container layer with two to three inches of absorbent material.
 d. Continue to fill the drum, covering each layer of containers with a layer of absorbent.
 e. Top off drum with a four to six inch layer of absorbent so that there is no void space.
 f. Fasten cover, gasket, ring and bolt closure.
 g. Attach appropriate warning labels, packing slips and waste notifications.
2. Wastes must be packaged by their category, so that the receiving disposal facility can legally and safely handle them. Wastes can be ignitable, reactive, corrosive, or toxic. In these categories there are subcategories that are also required.

3. Codes are used by the EPA to identify the type of waste that is in the drum. For example, P-wastes are acutely hazardous discarded chemicals products and F-wastes are spent solvents and solvent mixtures from nonspecific sources.

4. In addition, there are characteristic wastes. These include wastes that are not listed but possess one or more of the following hazardous characteristic: ignitability, corrosivity, reactivity and toxicity. Testing determination is outlined in Subpart C in 40 CFR part 161.

5. All waste chemicals must be packaged according to the requirements of CFR Title 49 (Department of Transportation) in the following hazard classes:

<table>
<thead>
<tr>
<th>Flammable Liquid</th>
<th>Organic Peroxides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammable Solid</td>
<td>Flammable Solids</td>
</tr>
<tr>
<td>Corrosive Material:</td>
<td>Hazardous Waste Liquid</td>
</tr>
<tr>
<td>• liquid acid</td>
<td>Hazardous Waste Solid</td>
</tr>
<tr>
<td>• liquid alkaline</td>
<td>Poison B Liquid</td>
</tr>
<tr>
<td>• solid acid</td>
<td>Poison B Solid</td>
</tr>
<tr>
<td>• solid alkaline</td>
<td>Oxidizer</td>
</tr>
<tr>
<td>Cyanides</td>
<td>Sulfides</td>
</tr>
</tbody>
</table>

a. Only the following container types are acceptable: DOT 21C Fiber Drum, DOT 17H Metal Drum, and DOT 37A. These containers are limited to these volumes:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>55 gallon</td>
<td>20 gallons</td>
<td>200 pounds</td>
</tr>
<tr>
<td>30 gallon</td>
<td>11 gallons</td>
<td>120 pounds</td>
</tr>
<tr>
<td>20 gallon</td>
<td>7 gallons</td>
<td>80 pounds</td>
</tr>
<tr>
<td>5 gallon</td>
<td>2 gallons</td>
<td>20 pounds</td>
</tr>
</tbody>
</table>

b. The individual waste holding containers for a multiple lab pack must be of glass not exceeding 6 liter rated capacity, or of metal or plastic not exceeding five gallon capacity. All inside lab pack containers must be individually labeled as to their contents.

c. A list of the containers in each drum must be attached to the top of the drum, and a copy must accompany the manifest with each shipment.

d. Regulations require the generator to ship their waste using only licensed hazardous waste haulers. Haulers must possess an EPA identification approval number to haul hazardous waste. All hazardous waste shipments must be accompanied by a completed manifest.

e. The manifest is used to track the waste to its final disposal.

f. Information regarding the manifest is contained in 40 CFR 262 Subpart B.
g. Waste materials sent to a Treatment, Storage, Disposal and Recycling Facility will not be unloaded until a proper manifest, copies of packing slips and any applicable Land Ban Notification Form are delivered and on site.

h. Another requirement on the manifest is the certification regarding waste minimization. This provision requires generators to certify that they have a program to minimize their waste output to a degree that is economically feasible.

i. All shipping containers must be marked with an EPA Hazardous Waste Sticker (40 CFR 262.32) and the appropriate USDOT Diamond Warning Label (49 CFR 172).

H. **Infectious Waste Disposal**

1. Infectious wastes are considered a separate class of waste, independent of solid wastes under the Ohio Solid and Hazardous Wastes Law. There are two types of infectious waste that are generated at Sinclair Community College:
 a. Sharps
 b. Boxed or bagged materials

2. College departments must segregate infectious waste at the point of generation:
 a. Sharps (hypodermic needles, scalpel blades, and microscopic slides) must be placed in approved puncture-resistant containers labeled "sharps" before they are transported for disposal.
 b. Gauze, gloves, gowns or other materials that have become contaminated with blood, blood products or OPIM must be placed in strong, moisture-impervious, red plastic bags labeled with the universal biohazard symbol.

3. Other type infectious wastes may be autoclaved and disposed in the regular trash stream.

Contact the Facilities Management Department for assistance in properly disposing of infectious waste.
Petroleum Storage Tanks

A. Above Ground and Below Ground Storage Tank Manuals¹

1. Book 1:
 a. Regulations and Reference Materials

2. Book 2:
 a. Total Site Tank Summary Information
 b. The SPCC Plan²
 c. Registration
 d. Insurance
 e. Leak Detection

3. Book 3:
 a. Tank Specific Data
 b. Fuel Purchases
 c. Leak Monitoring
 d. Spill History
 e. Removal Documentation

¹Tank Manuals are kept in Room 17117 by the Assistant Director of Facilities Management.
²Spill Prevention, Control and Countermeasure Plan is kept in Tank Manuals, Book 2.

B. Spill Prevention, Control and Countermeasure Plan

a. SPCC Plan (Section):
 A1 – Introduction
 A2 – Facility Information
 A3 – Designated Person Responsible for Oil Spill Prevention
 A4 – Spill Prevention
 A5 – Containment
 A6 – Spill Control and Cleanup
 A7 – Inspection and Records
 A8 – Fill Point Security
 A9 – Personnel Training
 A10 – Plan Review and Amendment

2. Spill Report Requirement
 a. Format for a Spill Report
 b. Spill Cleanup Material Inventory
 c. Facility Security
 d. The SPCC Training Program
 e. Map
§1910.1030 Bloodborne Pathogens.

(a) Scope and application. This section applies to all occupational exposure to blood or other potentially infectious materials as defined by paragraph (b) of this section.

(b) Definitions. For purposes of this section, the following shall apply:

Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, or designated representative.

Blood means human blood, human blood components, and products made from human blood.

Bloodborne pathogens means pathogenic microorganisms that are present in human blood and can cause disease in humans. These pathogens include, but are not limited to, hepatitis B virus (HBV) and human immunodeficiency virus (HIV).

Clinical laboratory means a workplace where diagnostic or other screening procedures are performed on blood or other potentially infectious materials.

Contaminated means the presence or the reasonably anticipated presence of blood or other potentially infectious materials on an item or surface.

Contaminated laundry means laundry which has been soiled with blood or other potentially infectious materials or may contain sharps.

Contaminated sharps means any contaminated object that can penetrate the skin including, but not limited to, needles, scalpels, broken glass, broken capillary tubes, and exposed ends of dental wires.

Decontamination means the use of physical or chemical means to remove, inactivate, or destroy bloodborne pathogens on a surface or item to the point where they are no longer capable of transmitting infectious particles and the surface or item is rendered safe for handling, use, or disposal.

Director means the Director of the National Institute for Occupational Safety and Health, U.S. Department of Health and Human Services, or designated representative.

Engineering controls means controls (e.g., sharps disposal containers, self-sheathing needles, safer medical devices, such as sharps with engineered sharps injury protections and needleless systems) that isolate or remove the bloodborne pathogens hazard from the work-place.

Exposure incident means a specific eye, mouth, other mucous membrane, non-intact skin, or parenteral contact with blood or other potentially infectious materials that results from the performance of an employee's duties.

Handwashing facilities means a facility providing an adequate supply of running potable water, soap, and single-use towels or air-drying machines.

Licensed healthcare professional is a person whose legally permitted scope of practice allows him or her to independently perform the activities required by paragraph

(f) Hepatitis B Vaccination and Post-exposure Evaluation and Follow-up.

HBV means hepatitis B virus.

HIV means human immunodeficiency virus.

Needleless systems means a device that does not use needles for:

(1) The collection of bodily fluids or withdrawal of body fluids after initial venous or arterial access is established;

(2) The administration of medication or fluids; or

(3) Any other procedure involving the potential for occupational exposure to bloodborne pathogens due to percutaneous injuries from contaminated sharps.

Occupational exposure means reasonably anticipated skin, eye, mucous membrane, or parenteral contact with blood or other potentially infectious materials that may result from the performance of an employee's duties.

Other potentially infectious materials means:

(1) The following human body fluids: semen, vaginal secretions, cerebrospinal fluid, synovial fluid, pleural fluid, pericardial fluid, peritoneal fluid, amniotic fluid, saliva in dental procedures, any body fluid that is visibly contaminated with blood, and all body fluids in situations where it is difficult or impossible to differentiate between body fluids;

(2) Any unfixed tissue or organ (other than intact skin) from a human (living or dead); and

(3) HIV-containing cell or tissue cultures, organ cultures, and HIV- or HBV-containing culture medium or other solutions; and blood, organs, or other tissues from experimental animals infected with HIV or HBV.

Parenteral means piercing mucous membranes or the skin barrier through such events as needlesticks, human bites, cuts, and abrasions.

Personal protective equipment is specialized clothing or equipment worn by an employee for protection against a hazard. General work clothes (e.g., uniforms, pants, shirts or blouses) not intended to function as protection against a hazard are not considered to be personal protective equipment.

Production facility means a facility engaged in industrial-scale, large-volume or high concentration production of HIV or HBV.

Regulated waste means liquid or semi-liquid blood or other potentially infectious materials, contaminated items that would release blood or other potentially infectious materials in a liquid or semi-liquid state if compressed; items that are caked with dried blood or other potentially infectious materials and are capable of releasing these materials during handling; contaminated sharps; and pathological and microbiological wastes containing blood or other potentially infectious materials.

Research laboratory means a laboratory producing or using research-laboratory-scale amounts of HIV or HBV. Research laboratories may produce high concentrations of
§1910.1030

1910 OSHA GUIDE

BLOODBORNE PATHOGENS

HIV or HBV but not in the volume found in production facilities.

Sharps with engineered sharps injury protections means a nonneedle sharp or a needle device used for withdrawing body fluids, accessing a vein or artery, or administering medications or other fluids, with a built-in safety feature or mechanism that effectively reduces the risk of an exposure incident.

Source individual means any individual, living or dead, whose blood or other potentially infectious materials may be a source of occupational exposure to the employee. Examples include, but are not limited to, hospital and clinic patients; clients in institutions for the developmentally disabled; trauma victims; clients of drug and alcohol treatment facilities; residents of hospices and nursing homes; human remains; and individuals who donate or sell blood or blood components.

Sterilize means the use of a physical or chemical procedure to destroy all microbial life including highly resistant bacterial endospores.

Universal precautions is an approach to infection control. According to the concept of Universal Precautions, all human blood and certain human body fluids are treated as if known to be infectious for HIV, HBV, and other bloodborne pathogens.

Work practice controls means controls that reduce the likelihood of exposure by altering the manner in which a task is performed (e.g., prohibiting recapping of needles by a two-handed technique).

(c) **Exposure control**—(1) Exposure Control Plan. (i) Each employer having an employee(s) with occupational exposure as defined by paragraph (b) of this section shall establish a written Exposure Control Plan designed to eliminate or minimize employee exposure.

(ii) The Exposure Control Plan shall contain at least the following elements:

(A) The exposure determination required by paragraph (c)(2),

(B) The schedule and method of implementation for paragraphs (d) Methods of Compliance, (e) HIV and HBV Research Laboratories and Production Facilities, (f) Hepatitis B Vaccination and Post-Exposure Evaluation and Follow-up, (g) Communication of Hazards to Employees, and (h) Recordkeeping, of this standard, and

(C) The procedure for the evaluation of circumstances surrounding exposure incidents as required by paragraph (f)(3)(i) of this standard.

(iii) Each employer shall ensure that a copy of the Exposure Control Plan is accessible to employees in accordance with 29 CFR 1910.20(e).

(iv) The Exposure Control Plan shall be reviewed and updated at least annually and whenever necessary to reflect new or modified tasks and procedures which affect occupational exposure and to reflect new or revised employee positions with occupational exposure. The review and update of such plans shall also:

(A) Reflect changes in technology that eliminate or reduce exposure to bloodborne pathogens; and

(B) Document annually consideration and implementation of appropriate commercially available and effective safer medical devices designed to eliminate or minimize occupational exposure.

(v) An employer, who is required to establish an Exposure Control Plan shall solicit input from non-managerial employees responsible for direct patient care who are potentially exposed to injuries from contaminated sharps in the identification, evaluation, and selection of effective engineering and work practice controls and shall document the solicitation in the Exposure Control Plan.

(vi) The Exposure Control Plan shall be made available to the Assistant Secretary and the Director upon request for examination and copying.

(2) Exposure determination. (i) Each employer who has an employee(s) with occupational exposure as defined by this section shall prepare an exposure determination. This exposure determination shall contain the following:

(A) A list of all job classifications in which all employees in those job classifications have occupational exposure;

(B) A list of job classifications in which some employees have occupational exposure, and

(C) A list of all tasks and procedures or groups of closely related task and procedures in which occupational exposure occurs and that are performed by employees in job classifications listed in accordance with the provisions of paragraph (c)(2)(i)(B) of this standard.

(ii) This exposure determination shall be made without regard to the use of personal protective equipment.

(d) **Methods of compliance**—(1) General-Universal precautions shall be observed to prevent contact with blood or other potentially infectious materials. Under circumstances in which differentiation between body fluid
types is difficult or impossible, all body fluids shall be considered potentially infectious materials.

(2) Engineering and work practice controls. (i) Engineering and work practice controls shall be used to eliminate or minimize employee exposure. Where occupational exposure remains after institution of these controls, personal protective equipment shall also be used.

(ii) Engineering controls shall be examined and maintained or replaced on a regular schedule to ensure their effectiveness.

(iii) Employers shall provide handwashing facilities which are readily accessible to employees.

(iv) When provision of handwashing facilities is not feasible, the employer shall provide either an appropriate antiseptic hand cleanser in conjunction with clean cloth/paper towels or antiseptic towelettes. When antiseptic hand cleansers or towelettes are used, hands shall be washed with soap and running water as soon as feasible.

(v) Employers shall ensure that employees wash their hands immediately or as soon as feasible after removal of gloves or personal protective equipment.

(vi) Employers shall ensure that employees wash hands and any other skin with soap and water, or flush mucous membranes with water immediately or as soon as feasible following contact of such body areas with blood or other potentially infectious materials.

(vii) Contaminated needles and other contaminated sharps shall not be bent, recapped, or removed except as noted in paragraphs (d)(2)(vii)(A) and (d)(2)(vii)(B) below. Shearing or breaking of contaminated needles is prohibited.

(A) Contaminated needles and other contaminated sharps shall not be bent, recapped or removed unless the employer can demonstrate that no alternative is feasible or that such action is required by a specific medical procedure.

(B) Such bending, recapping or needle removal must be accomplished through the use of a mechanical device or a one-handed technique.

(viii) Immediately or as soon as possible after use, contaminated reusable sharps shall be placed in appropriate containers until properly reprocessed. These containers shall be:

(A) Puncture resistant;

(B) Labeled or color-coded in accordance with this standard;

(C) Leakproof on the sides and bottom; and

(D) In accordance with the requirements set forth in paragraph (d)(4)(ii)(E) for reusable sharps.

(ix) Eating, drinking, smoking, applying cosmetics or lip balm, and handling contact lenses are prohibited in work areas where there is a reasonable likelihood of occupational exposure.

(x) Food and drink shall not be kept in refrigerators, freezers, shelves, cabinets or on countertops or benchtops where blood or other potentially infectious materials are present.

(xi) All procedures involving blood or other potentially infectious materials shall be performed in such a manner as to minimize splashing, spraying, spattering, and generation of droplets of these substances.

(xii) Mouth pipetting/suctioning of blood or other potentially infectious materials is prohibited.

(xiii) Specimens of blood or other potentially infectious materials shall be placed in a container which prevents leakage during collection, handling, processing, storage, transport, or shipping.

(A) The container for storage, transport, or shipping shall be labeled or color-coded according to paragraph (g)(1)(i) and closed prior to being stored, transported, or shipped. When a facility utilizes Universal Precautions in the handling of all specimens, the labeling/color-coding of specimens is not necessary provided containers are recognizable as containing specimens. This exception only applies while such specimens/containers remain within the facility. Labeling or color-coding in accordance with paragraph (g)(1)(i) is required when such specimens/containers leave the facility.

(B) If outside contamination of the primary container occurs, the primary container shall be placed within a second container which prevents leakage during handling, processing, storage, transport, or shipping and is labeled or color-coded according to the requirements of this standard.

(C) If the specimen could puncture the primary container, the primary container shall be placed within a secondary container which is puncture-resistant in addition to the above characteristics.

(xiv) Equipment which may become contaminated with blood or other potentially infectious materials shall be examined prior to servicing or shipping and shall be decontaminated as necessary, unless the employer can demonstrate that decontamination of such equipment or portions of such equipment is not feasible.

(A) A readily observable label in accordance with paragraph (g)(1)(i)(H) shall be attached to the equipment stating which portions remain contaminated.

(B) The employer shall ensure that this information is conveyed to all affected employees, the servicing representative, and/or the manufacturer as appropriate, prior to handling, servicing, or shipping so that appropriate precautions will be taken.
§1910.1030

(3) Personal protective equipment-(i) Provision. When there is occupational exposure, the employer shall provide, at no cost to the employee, appropriate personal protective equipment such as, but not limited to, gloves, gowns, laboratory coats, face shields or masks and eye protection, and mouthpieces, resuscitation bags, pocket masks, or other ventilation devices. Personal protective equipment will be considered "appropriate" only if it does not permit blood or other potentially infectious materials to pass through to or reach the employee’s work clothes, street clothes, undergarments, skin, eyes, mouth, or other mucous membranes under normal conditions of use and for the duration of time which the protective equipment will be used.

(ii) Use. The employer shall ensure that the employee uses appropriate personal protective equipment unless the employer shows that the employee temporarily and briefly declined to use personal protective equipment when, under rare and extraordinary circumstances, it was the employee's professional judgment that in the specific instance its use would have prevented the delivery of health care or public safety services or would have posed an increased hazard to the safety of the worker or co-worker. When the employee makes this judgement, the circumstances shall be investigated and documented in order to determine whether changes can be instituted to prevent such occurrences in the future.

(iii) Accessibility. The employer shall ensure that appropriate personal protective equipment in the appropriate sizes is readily accessible at the worksite or is issued to employees. Hypoallergenic gloves, glove liners, powderless gloves, or other similar alternatives shall be readily accessible to those employees who are allergic to the gloves normally provided.

(iv) Cleaning, laundering, and disposal. The employer shall clean, launder, and dispose of personal protective equipment required by paragraphs (d) and (e) of this standard, at no cost to the employee.

(v) Repair and replacement. The employer shall repair or replace personal protective equipment as needed to maintain its effectiveness, at no cost to the employee.

(vi) If a garment(s) is penetrated by blood or other potentially infectious materials, the garment(s) shall be removed immediately or as soon as feasible.

(vii) All personal protective equipment shall be removed prior to leaving the work area.

(viii) When personal protective equipment is removed it shall be placed in an appropriately designated area or container for storage, washing, decontamination or disposal.

(ix) Gloves. Gloves shall be worn when it can be reasonably anticipated that the employee may have hand contact with blood, other potentially infectious materials, mucous membranes, and non-intact skin; when performing vascular access procedures except as specified in paragraph (d)(3)(ix)(D); and when handling or touching contaminated items or surfaces.

(A) Disposable (single use) gloves such as surgical or examination gloves, shall be replaced as soon as practical when contaminated or as soon as feasible if they are torn, punctured, or when their ability to function as a barrier is compromised.

(B) Disposable (single use) gloves shall not be washed or decontaminated for re-use.

(C) Utility gloves may be decontaminated for re-use if the integrity of the glove is not compromised. However, they must be discarded if they are cracked, peeling, torn, punctured, or exhibit other signs of deterioration or when their ability to function as a barrier is compromised.

(D) If an employer in a volunteer blood donation center judges that routine gloving for all phlebotomies is not necessary then the employer shall:

(1) Periodically reevaluate this policy;

(2) Make gloves available to all employees who wish to use them for phlebotomy;

(3) Not discourage the use of gloves for phlebotomy; and

(4) Require that gloves be used for phlebotomy in the following circumstances:

(i) When the employee has cuts, scratches, or other breaks in his or her skin;

(ii) When the employee judges that hand contamination with blood may occur, for example, when performing phlebotomy on an uncooperative source individual; and

(iii) When the employee is receiving training in phlebotomy.

(x) Masks, eye protection, and face shields. Masks in combination with eye protection devices, such as goggles or glasses with solid side shields, or chin-length face shields, shall be worn whenever splashes, spray, spatter, or droplets of blood or other potentially infectious materials may be generated and eye, nose, or mouth contamination can be reasonably anticipated.

(xi) Gowns, aprons, and other protective body clothing. Appropriate protective clothing such as, but not limited to, gowns, aprons, lab coats, clinic jackets, or similar outer garments shall be worn in occupational exposure situations. The type and characteristics will depend upon the task and degree of exposure anticipated.

(xii) Surgical caps or hoods and/or shoe covers or boots shall be worn in instances when gross contamination can reasonably be anticipated (e.g., autopsies, orthopaedic surgery).

(4) Housekeeping. (i) General. Employers shall ensure that the worksite is maintained in a clean and sanitary...
condition. The employer shall determine and implement an appropriate written schedule for cleaning and method of decontamination based upon the location within the facility, type of surface to be cleaned, type of soil present, and tasks or procedures being performed in the area.

(ii) All equipment and environmental and working surfaces shall be cleaned and decontaminated after contact with blood or other potentially infectious materials.

(A) Contaminated work surfaces shall be decontaminated with an appropriate disinfectant after completion of procedures; immediately or as soon as feasible when surfaces are overtly contaminated or after any spill of blood or other potentially infectious materials; and at the end of the work shift if the surface may have become contaminated since the last cleaning.

(B) Protective coverings, such as plastic wrap, aluminum foil, or imperviously-backed absorbent paper used to cover equipment and environmental surfaces, shall be removed and replaced as soon as feasible when they become overtly contaminated or at the end of the work shift if they may have become contaminated during the shift.

(C) All bins, pails, cans, and similar receptacles intended for reuse which have a reasonable likelihood for becoming contaminated with blood or other potentially infectious materials shall be inspected and decontaminated on a regularly scheduled basis and cleaned and decontaminated immediately or as soon as feasible upon visible contamination.

(D) Broken glassware which may be contaminated shall not be picked up directly with the hands. It shall be cleaned up using mechanical means, such as a brush and dust pan, tongs, or forceps.

(E) Reusable sharps that are contaminated with blood or other potentially infectious materials shall not be stored or processed in a manner that requires employees to reach by hand into the containers where these sharps have been placed.

(iii) Regulated waste.

(A) Contaminated sharps discarding and containment.

(1) Contaminated sharps shall be discarded immediately or as soon as feasible in containers that are:

(i) Easily accessible to personnel and located as close as is feasible to the immediate area where sharps are used or can be reasonably anticipated to be found (e.g., laundries);

(ii) Maintained upright throughout use; and

(iii) Replaced routinely and not be allowed to overfill.

(2) When moving containers of contaminated sharps from the area of use, the containers shall be:

(i) Closed immediately prior to removal or replacement to prevent spillage or protrusion of contents during handling, storage, transport, or shipping;

(ii) Placed in a secondary container if leakage is possible. The second container shall be:

(A) Closable;

(B) Constructed to contain all contents and prevent leakage during handling, storage, transport, or shipping; and

(C) Labeled or color-coded according to paragraph (g)(1)(i) of this standard.

(3) Reusable containers shall not be opened, emptied, or cleaned manually or in any other manner which would expose employees to the risk of percutaneous injury.

(B) Other regulated waste containment.

(1) Regulated waste shall be placed in containers which are:

(i) Closable;

(ii) Constructed to contain all contents and prevent leakage of fluids during handling, storage, transport or shipping;

(iii) Labeled or color-coded in accordance with paragraph (g)(1)(i) of this standard; and

(iv) Closed prior to removal to prevent spillage or protrusion of contents during handling, storage, transport, or shipping.

(2) If outside contamination of the regulated waste container occurs, it shall be placed in a second container. The second container shall be:

(i) Closable;

(ii) Constructed to contain all contents and prevent leakage of fluids during handling, storage, transport or shipping;

(iii) Labeled or color-coded in accordance with paragraph (g)(1)(i) of this standard; and

(iv) Closed prior to removal to prevent spillage or protrusion of contents during handling, storage, transport, or shipping.
(C) Disposal of all regulated waste shall be in accordance with applicable regulations of the United States, States and Territories, and political subdivisions of States and Territories.

(iv) Laundry.

(A) Contaminated laundry shall be handled as little as possible with a minimum of agitation. (i) Contaminated laundry shall be bagged or containerized at the location where it was used and shall not be sorted or rinsed in the location of use.

(2) Contaminated laundry shall be placed and transported in bags or containers labeled or color-coded in accordance with paragraph (g)(1)(i) of this standard. When a facility utilizes Universal Precautions in the handling of all soiled laundry, alternative labeling or coloring is sufficient if it permits all employees to recognize the containers as requiring compliance with Universal Precautions.

(3) Whenever contaminated laundry is wet and presents a reasonable likelihood of soak-through of or leakage from the bag or container, the laundry shall be placed and transported in bags or containers which prevent soak-through and/or leakage of fluids to the exterior.

(B) The employer shall ensure that employees who have contact with contaminated laundry wear protective gloves and other appropriate personal protective equipment.

(C) When a facility ships contaminated laundry to a second facility which does not use Universal Precautions in the handling of all laundry, the facility generating the contaminated laundry must place such laundry in bags or containers which are labeled or color-coded in accordance with paragraph (g)(1)(i).

(e) HIV and HBV research laboratories and production facilities. (1) This paragraph applies to research laboratories and production facilities engaged in the culture, production, concentration, experimentation, and manipulation of HIV and HBV. It does not apply to clinical or diagnostic laboratories engaged solely in the analysis of blood, tissues, or organs. These requirements apply in addition to the other requirements of the standard.

(2) Research laboratories and production facilities shall meet the following criteria:

(i) Standard microbiological practices. All regulated waste shall either be incinerated or decontaminated by a method such as autoclaving known to effectively destroy bloodborne pathogens.

(ii) Special practices.

(A) Laboratory doors shall be kept closed when work involving HIV or HBV is in progress.

(B) Contaminated materials that are to be decontaminated at a site away from the work area shall be placed in a durable, leakproof, labeled or color-coded container that is closed before being removed from the work area.

(C) Access to the work area shall be limited to authorized persons. Written policies and procedures shall be established whereby only persons who have been advised of the potential biohazard, who meet any specific entry requirements, and who comply with all entry and exit procedures shall be allowed to enter the work areas and animal rooms.

(D) When other potentially infectious materials or infected animals are present in the work area or containment module, a hazard warning sign incorporating the universal biohazard symbol shall be posted on all access doors. The hazard warning sign shall comply with paragraph (g)(1)(i) of this standard.

(E) All activities involving other potentially infectious materials shall be conducted in biological safety cabinets or other physical containment devices within the containment module. No work with these other potentially infectious materials shall be conducted on the open bench.

(F) Laboratory coats, gowns, smocks, uniforms, or other appropriate protective clothing shall be used in the work area and animal rooms. Protective clothing shall not be worn outside of the work area and shall be decontaminated before being laundered.

(G) Special care shall be taken to avoid skin contact with other potentially infectious materials. Gloves shall be worn when handling infected animals and when making hand contact with other potentially infectious material is unavoidable.

(H) Before disposal all waste from work areas and from animal rooms shall either be incinerated or decontaminated by a method such as autoclaving known to effectively destroy bloodborne pathogens.

(I) Vacuum lines shall be protected with liquid disinfectant traps and high-efficiency particulate air (HEPA) filters or filters of equivalent or superior efficiency and which are checked routinely and maintained or replaced as necessary.

(J) Hypodermic needles and syringes shall be used only for parenteral injection and aspiration of fluids from laboratory animals and diaphragm bottles. Only needle-locking syringes or disposable syringe-needle units (i.e., the needle is integral to the syringe) shall be used for the injection or aspiration of other potentially infectious materials. Extreme caution shall be used when handling needles and syringes. A needle shall not be bent, sheared, replaced in the sheath or guard, or removed from the syringe following use. The needle and syringe shall be promptly placed in a puncture-resistant container or autoclaved or decontaminated before reuse or disposal.
(K) All spills shall be immediately contained and cleaned up by appropriate professional staff or others properly trained and equipped to work with potentially concentrated infectious materials.

(L) A spill or accident that results in an exposure incident shall be immediately reported to the laboratory director or other responsible person.

(M) A biosafety manual shall be prepared or adopted and periodically reviewed and updated at least annually or more often if necessary. Personnel shall be advised of practices and procedures, and shall be required to follow them.

(iii) Containment equipment. (A) Certified biological safety cabinets (Class I, II, or III) or other appropriate combinations of personal protection or physical containment devices, such as special protective clothing, respirators, centrifuge safety cups, sealed centrifuge rotors, and containment caging for animals, shall be used for all activities with other potentially infectious materials that pose a threat of exposure to droplets, splashes, spills, or aerosols.

(B) Biological safety cabinets shall be certified when installed, whenever they are moved and at least annually.

(3) HIV and HBV research laboratories shall meet the following criteria:

(i) Each laboratory shall contain a facility for hand washing and an eye wash facility which is readily available within the work area.

(ii) An autoclave for decontamination of regulated waste shall be available.

(4) HIV and HBV production facilities shall meet the following criteria:

(i) The work areas shall be separated from areas that are open to unrestricted traffic flow within the building. Passage through two sets of doors shall be the basic requirement for entry into the work area from access corridors or other contiguous areas. Physical separation of the high-containment work area from access corridors or other areas or activities may also be provided by a double-doored clothes-change room (showers may be included), airlock, or other access facility that requires passing through two sets of doors before entering the work area.

(ii) The surfaces of doors, walls, floors and ceilings in the work area shall be water resistant so that they can be easily cleaned. Penetrations in these surfaces shall be sealed or capable of being sealed to facilitate decontamination.

(iii) Each work area shall contain a sink for washing hands and a readily available eye wash facility. The sink shall be foot, elbow, or automatically operated and shall be located near the exit door of the work area.

(iv) Access doors to the work area or containment module shall be self-closing.

(v) An autoclave for decontamination of regulated waste shall be available within or as near as possible to the work area.

(vi) A ducted exhaust-air ventilation system shall be provided. This system shall create directional airflow that draws air into the work area through the entry area. The exhaust air shall not be recirculated to any other area of the building, shall be discharged to the outside, and shall be dispersed away from occupied areas and air intakes. The proper direction of the airflow shall be verified (i.e., into the work area).

(5) Training requirements. Additional training requirements for employees in HIV and HBV research laboratories and HIV and HBV production facilities are specified in paragraph (g)(2)(ix).

(i) Hepatitis B vaccination and post-exposure evaluation and follow-up—(1) General. (i) The employer shall make available the hepatitis B vaccine and vaccination series to all employees who have occupational exposure, and post-exposure evaluation and follow-up to all employees who have had an exposure incident.

(ii) The employer shall ensure that all medical evaluations and procedures including the hepatitis B vaccine and vaccination series and post-exposure evaluation and follow-up, including prophylaxis, are:

(A) Made available at no cost to the employee;

(B) Made available to the employee at a reasonable time and place;

(C) Performed by or under the supervision of a licensed physician or by or under the supervision of another licensed healthcare professional; and

(D) Provided according to recommendations of the U.S. Public Health Service current at the time these evaluations and procedures take place, except as specified by this paragraph (f).

(iii) The employer shall ensure that all laboratory tests are conducted by an accredited laboratory at no cost to the employee.

(2) Hepatitis B vaccination. (i) Hepatitis B vaccination shall be made available after the employee has received the training required in paragraph (g)(2)(vii)(i) and within 10 working days of initial assignment to all employees who have occupational exposure unless the employee has previously received the complete hepatitis B vaccination series, antibody testing has revealed that the
employee is immune, or the vaccine is contraindicated for medical reasons.

(ii) The employer shall not make participation in a prescreening program a prerequisite for receiving hepatitis B vaccination.

(iii) If the employee initially declines hepatitis B vaccination but at a later date while still covered under the standard decides to accept the vaccination, the employer shall make available hepatitis B vaccination at that time.

(iv) The employer shall assure that employees who decline to accept hepatitis B vaccination offered by the employer sign the statement in appendix A.

(v) If a routine booster dose(s) of hepatitis B vaccine is recommended by the U.S. Public Health Service at a future date, such booster dose(s) shall be made available in accordance with section (f)(1)(ii).

(3) Post-exposure evaluation and follow-up. Following a report of an exposure incident, the employer shall make immediately available to the exposed employee a confidential medical evaluation and follow-up, including at least the following elements:

(i) Documentation of the route(s) of exposure, and the circumstances under which the exposure incident occurred;

(ii) Identification and documentation of the source individual, unless the employer can establish that identification is infeasible or prohibited by state or local law;

(A) The source individual’s blood shall be tested as soon as feasible and after consent is obtained in order to determine HBV and HIV infectivity. If consent is not obtained, the employer shall establish that legally required consent cannot be obtained. When the source individual’s consent is not required by law, the source individual’s blood, if available, shall be tested and the results documented.

(B) When the source individual is already known to be infected with HBV or HIV, testing for the source individual’s known HBV or HIV status need not be repeated.

(C) Results of the source individual’s testing shall be made available to the exposed employee, and the employee shall be informed of applicable laws and regulations concerning disclosure of the identity and infectious status of the source individual.

(iii) Collection and testing of blood for HBV and HIV serological status;

(A) The exposed employee’s blood shall be collected as soon as feasible and tested after consent is obtained.

(B) If the employee consents to baseline blood collection, but does not give consent at that time for HIV serologic testing, the sample shall be preserved for at least 90 days. If, within 90 days of the exposure incident, the employee elects to have the baseline sample tested, such testing shall be done as soon as feasible.

(iv) Post-exposure prophylaxis, when medically indicated, as recommended by the U.S. Public Health Service;

(v) Counseling; and

(vi) Evaluation of reported illnesses.

(4) Information provided to the healthcare professional. (i) The employer shall ensure that the healthcare professional responsible for the employee’s Hepatitis B vaccination is provided a copy of this regulation.

(ii) The employer shall ensure that the healthcare professional evaluating an employee after an exposure incident is provided the following information:

(A) A copy of this regulation;

(B) A description of the exposed employee’s duties as they relate to the exposure incident;

(C) Documentation of the route(s) of exposure and circumstances under which exposure occurred;

(D) Results of the source individual’s blood testing, if available; and

(E) All medical records relevant to the appropriate treatment of the employee including vaccination status which are the employer’s responsibility to maintain.

(5) Healthcare professional’s written opinion. The employer shall obtain and provide the employee with a copy of the evaluating healthcare professional’s written opinion within 15 days of the completion of the evaluation.

(i) The healthcare professional’s written opinion for Hepatitis B vaccination shall be limited to whether Hepatitis B vaccination is indicated for an employee, and if the employee has received such vaccination.

(ii) The healthcare professional’s written opinion for post-exposure evaluation and follow-up shall be limited to the following information:

(A) That the employee has been informed of the results of the evaluation; and

(B) That the employee has been told about any medical conditions resulting from exposure to blood or other potentially infectious materials which require further evaluation or treatment.

(iii) All other findings or diagnoses shall remain confidential and shall not be included in the written report.

(6) Medical recordkeeping. Medical records required by this standard shall be maintained in accordance with paragraph (h)(1) of this section.
(g) Communication of hazards to employees. (1) Labels and signs. (i) Labels. (A) Warning labels shall be affixed to containers of regulated waste, refrigerators and freezers containing blood or other potentially infectious material; and other containers used to store, transport, or ship blood or other potentially infectious materials, except as provided in paragraph (g)(1)(i)(E), (F) and (G).

(B) Labels required by this section shall include the following legend:

(B) These signs shall be fluorescent orange-red or predominantly so, with lettering and symbols in a contrasting color.

(ii) Signs. (A) The employer shall post signs at the entrance to work areas specified in paragraph (e), HIV and HBV Research Laboratory and Production Facilities, which shall bear the following legend:

(iii) [Reserved]

(iv) Annual training for all employees shall be provided within one year of their previous training.

(v) Employers shall provide additional training when changes such as modification of tasks or procedures or institution of new tasks or procedures affect the employee’s occupational exposure. The additional training may be limited to addressing the new exposures created.

(vi) Material appropriate in content and vocabulary to educational level, literacy, and language of employees shall be used.

(vii) The training program shall contain at a minimum the following elements:

(A) An accessible copy of the regulatory text of this standard and an explanation of its contents;

(B) A general explanation of the epidemiology and symptoms of bloodborne diseases;

(C) An explanation of the modes of transmission of bloodborne pathogens;

(D) An explanation of the employer's exposure control plan and the means by which the employee can obtain a copy of the written plan;
§1910.1030

(E) An explanation of the appropriate methods for recognizing tasks and other activities that may involve exposure to blood and other potentially infectious materials;

(F) An explanation of the use and limitations of methods that will prevent or reduce exposure including appropriate engineering controls, work practices, and personal protective equipment;

(G) Information on the types, proper use, location, removal, handling, decontamination and disposal of personal protective equipment;

(H) An explanation of the basis for selection of personal protective equipment;

(I) Information on the hepatitis B vaccine, including information on its efficacy, safety, method of administration, the benefits of being vaccinated, and that the vaccine and vaccination will be offered free of charge;

(J) Information on the appropriate actions to take and persons to contact in an emergency involving blood or other potentially infectious materials;

(K) An explanation of the procedure to follow if an exposure incident occurs, including the method of reporting the incident and the medical follow-up that will be made available;

(L) Information on the post-exposure evaluation and follow-up that the employer is required to provide for the employee following an exposure incident

(M) An explanation of the signs and labels and/or color coding required by paragraph (g)(1); and

(N) An opportunity for interactive questions and answers with the person conducting the training session.

(viii) The person conducting the training shall be knowledgeable in the subject matter covered by the elements contained in the training program as it relates to the workplace that the training will address.

(ix) Additional initial training for employees in HIV and HBV laboratories and production facilities. Employees in HIV or HBV research laboratories and HIV or HBV production facilities shall receive the following initial training in addition to the above training requirements.

(A) The employer shall assure that employees demonstrate proficiency in standard microbiological practices and techniques and in the practices and operations specific to the facility before being allowed to work with HIV or HBV.

(B) The employer shall assure that employees have prior experience in the handling of human pathogens or tissue cultures before working with HIV or HBV.

(C) The employer shall provide a training program to employees who have no prior experience in handling human pathogens. Initial work activities shall not include the handling of infectious agents. A progression of work activities shall be assigned as techniques are learned and proficiency is developed. The employer shall assure that employees participate in work activities involving infectious agents only after proficiency has been demonstrated.

(h) Recordkeeping . (1) Medical records. (i) The employer shall establish and maintain an accurate record for each employee with occupational exposure, in accordance with 29 CFR 1910.1020.

(ii) This record shall include:

(A) The name and social security number of the employee;

(B) A copy of the employee's hepatitis B vaccination status including the dates of all the hepatitis B vaccinations and any medical records relative to the employee's ability to receive vaccination as required by paragraph (f)(2);

(C) A copy of all results of examinations, medical testing, and follow-up procedures as required by paragraph (f)(3);

(D) The employer's copy of the healthcare professional's written opinion as required by paragraph (f)(5); and

(E) A copy of the information provided to the healthcare professional as required by paragraphs (f)(4)(ii)(B)(C) and (D).

(iii) Confidentiality. The employer shall ensure that employee medical records required by paragraph (h)(1) are:

(A) Kept confidential; and

(B) Not disclosed or reported without the employee's express written consent to any person within or outside the workplace except as required by this section or as may be required by law.

(iv) The employer shall maintain the records required by paragraph (h) for at least the duration of employment plus 30 years in accordance with 29 CFR 1910.1020.

(2) Training records. (i) Training records shall include the following information:

(A) The dates of the training sessions;

(B) The contents or a summary of the training sessions;

(C) The names and qualifications of persons conducting the training; and

(D) The names and job titles of all persons attending the training sessions.

(ii) Training records shall be maintained for 3 years from the date on which the training occurred.

(3) Availability. (i) The employer shall ensure that all records required to be maintained by this section shall be made available upon request to the Assistant Secretary and the Director for examination and copying.

(ii) Employee training records required by this paragraph shall be provided upon request for examination and
(iii) Employee medical records required by this paragraph shall be provided upon request for examination and copying to the subject employee, to anyone having written consent of the subject employee, to the Director, and to the Assistant Secretary in accordance with 29 CFR 1910.1020.

(4) Transfer of records. The employer shall comply with the requirements involving transfer of records set forth in 29 CFR 1910.1020(h).

(5) Sharps injury log. (i) The employer shall establish and maintain a sharps injury log for the recording of percutaneous injuries from contaminated sharps. The information in the sharps injury log shall be recorded and maintained in such manner as to protect the confidentiality of the injured employee. The sharps injury log shall contain, at a minimum:

(A) The type and brand of device involved in the incident,

(B) The department or work area where the exposure incident occurred, and

(C) An explanation of how the incident occurred.

(ii) The requirement to establish and maintain a sharps injury log shall apply to any employer who is required to maintain a log of occupational injuries and illnesses under 29 CFR 1904.

(iii) The sharps injury log shall be maintained for the period required by 29 CFR 1904.33.

(i) Oates. (1) Effective date. The standard shall become effective on March 6, 1992.

(2) The Exposure Control Plan required by paragraph (c) of this section shall be completed on or before May 5, 1992.

(3) Paragraph (g)(2) Information and Training and (h) Recordkeeping shall take effect on or before June 4, 1992.

APPENDIX A TO §1910.1030-HEPATITIS B VACCINE DECLINATION (MANDATORY)

I understand that due to my occupational exposure to blood or other potentially infectious materials I may be at risk of acquiring hepatitis B virus (HBV) infection. I have been given the opportunity to be vaccinated with hepatitis B vaccine, at no charge to myself. However, I decline hepatitis B vaccination at this time. I understand that by declining this vaccine, I continue to be at risk of acquiring hepatitis B, a serious disease. If in the future I continue to have occupational exposure to blood or other potentially infectious materials and I want to be vaccinated with hepatitis B vaccine, I can receive the vaccination series at no charge to me.
Hazard not otherwise classified (HNOC) means an adverse physical or health effect identified through evaluation of scientific evidence during the classification process that does not meet the specified criteria for the physical and health hazard classes addressed in this section. This does not extend coverage to adverse physical and health effects for which there is a hazard class addressed in this section, but the effect either falls below the cut-off value/concentration limit of the hazard class or is under a GHS hazard category that has not been adopted by OSHA (e.g., acute toxicity Category 5).

Hazard statement means a statement assigned to a hazard class and category that describes the nature of the hazard(s) of a chemical, including, where appropriate, the degree of hazard.

Hazardous chemical means any chemical which is classified as a physical hazard or a health hazard, a simple asphyxiant, combustible dust, pyrophoric gas, or hazard not otherwise classified.

Health hazard means a chemical which is classified as posing one of the following hazardous effects: acute toxicity (any route of exposure); skin corrosion or irritation; serious eye damage or eye irritation; respiratory or skin sensitization; germ cell mutagenicity; carcinogenicity; reproductive toxicity; specific target organ toxicity (single or repeated exposure); or aspiration hazard. The criteria for determining whether a chemical is classified as a health hazard are detailed in Appendix A to §1910.1200—Health Hazard Criteria.

Immediate use means that the hazardous chemical will be under the control of and used only by the person who transfers it from a labeled container and only within the work shift in which it is transferred.

Importer means the first business with employees within the Customs Territory of the United States which receives hazardous chemicals produced in other countries for the purpose of supplying them to distributors or employers within the United States.

Label means an appropriate group of written, printed or graphic information elements concerning a hazardous chemical that is affixed to, printed on, or attached to the immediate container of a hazardous chemical, or to the outside packaging.

Label elements means the specified pictogram, hazard statement, signal word and precautionary statement for each hazard class and category.

Mixture means a combination or a solution composed of two or more substances in which they do not react.

Physical hazard means a chemical that is classified as posing one of the following hazardous effects: explosive; flammable (gases, aerosols, liquids, or solids); oxidizer (liquid, solid or gas); self-reactive; pyrophoric (liquid or solid); self-heating; organic peroxide; corrosive to metal; gas under pressure; or in contact with water emits flammable gas. See Appendix B to §1910.1200—Physical Hazard Criteria.

(a) Purpose. (1) The purpose of this section is to ensure that the hazards of all chemicals produced or imported are classified, and that information concerning the classified hazards is transmitted to employers and employees. The requirements of this section are intended to be consistent with the provisions of the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS), Revision 3. The transmittal of information is to be accomplished by means of comprehensive hazard communication programs, which are to include container labeling and other forms of warning, safety data sheets and employee training.

(2) This occupational safety and health standard is intended to address comprehensively the issue of classifying the potential hazards of chemicals, and communicating information concerning hazards and appropriate protective measures to employees, and to preempt any legislative or regulatory enactments of a state, or political subdivision of a state, pertaining to this subject. Classifying the potential hazards of chemicals and communicating information concerning hazards and appropriate protective measures to employees, may include, for example, but is not limited to, provisions for: developing and maintaining a written hazard communication program for the workplace, including lists of hazardous chemicals present; labeling of containers of chemicals in the workplace, as well as of containers of chemicals being shipped to other workplaces; preparation and distribution of safety data sheets to employees and downstream employers; and development and implementation of employee training programs regarding hazards of chemicals and protective measures. Under section 18 of the Act, no state or political subdivision of a state may adopt or enforce any requirement relating to the issue addressed by this Federal standard, except pursuant to a Federally-approved state plan.

(b) Scope and application. (1) This section requires chemical manufacturers or importers to classify the hazards of chemicals which they produce or import, and all employers to provide information to their employees about the hazardous chemicals to which they are exposed, by means of a hazard communication program, labels and other forms of warning, safety data sheets, and information and training. In addition, this section requires distributors to transmit the required information to employers. (Employers who do not produce or import chemicals need only focus on those parts of this rule that deal with establishing a workplace program and communicating information to their workers.)

(2) This section applies to any chemical which is known to be present in the workplace in such a manner that employees may be exposed under normal conditions of use or in a foreseeable emergency.

(3) This section applies to laboratories only as follows:

(i) Employers shall ensure that labels on incoming containers of hazardous chemicals are not removed or defaced;

(ii) Employers shall maintain any safety data sheets that are received with incoming shipments of hazardous chemicals, and ensure that they are readily accessible during each workshift to laboratory employees when they are in their work areas;

(iii) Employers shall ensure that laboratory employees are provided information and training in accordance with paragraph (h) of this section, except for the location and availability of the written hazard communication program under paragraph (h)(2)(iii) of this section; and,

(iv) Laboratory employers that ship hazardous chemicals are considered to be either a chemical manufacturer or a distributor under this rule, and thus must ensure that any containers of hazardous chemicals leaving the laboratory are labeled in accordance with paragraph (f) of this section, and that a safety data sheet is provided to distributors and other employers in accordance with paragraphs (g)(6) and (g)(7) of this section.

(4) In work operations where employees only handle chemicals in sealed containers which are not opened under normal conditions of use (such as are found in marine cargo handling, warehousing, or retail sales), this section applies to these operations only as follows:

(i) Employers shall ensure that labels on incoming containers of hazardous chemicals are not removed or defaced;

(ii) Employers shall maintain copies of any safety data sheets that are received with incoming shipments of the sealed containers of hazardous chemicals, shall obtain a safety data sheet as soon as possible for sealed containers of hazardous chemicals received without a safety data sheet if an employee requests the safety data sheet, and shall ensure that the safety data sheets are readily accessible during each work shift to employees when they are in their work area(s); and

(iii) Employers shall ensure that employees are provided with information and training in accordance with paragraph (h) of this section (except for the location and availability of the written hazard communication program under paragraph (h)(2)(iii) of this section), to the extent necessary to protect them in the event of a spill or leak of a hazardous chemical from a sealed container.

(5) This section does not require labeling of the following chemicals:

(i) Any pesticide as such term is defined in the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 136 et seq.), when subject to the labeling requirements of that Act and labeling regulations issued under that Act by the Environmental Protection Agency;

(ii) Any chemical substance or mixture as such terms are defined in the Toxic Substances Control Act (15 U.S.C. 2601 et seq.), when subject to the labeling requirements of that Act and labeling regulations issued under that Act by the Environmental Protection Agency;

(iii) Any food, food additive, color additive, drug, cosmetic, or medical or veterinary device or product, including materials intended for use as ingredients in such products (e.g. flavors and fragrances), as such terms are defined in
the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 301 et seq.) or the Virus-Serum-Toxin Act of 1913 (21 U.S.C. 151 et seq.), and regulations issued under those Acts, when they are subject to the labeling requirements under those Acts by either the Food and Drug Administration or the Department of Agriculture;

(iv) Any distilled spirits (beverage alcohols), wine, or malt beverage intended for nonindustrial use, as such terms are defined in the Federal Alcohol Administration Act (27 U.S.C. 201 et seq.) and regulations issued under that Act, when subject to the labeling requirements of that Act and labeling regulations issued under that Act by the Bureau of Alcohol, Tobacco, Firearms and Explosives;

(v) Any consumer product or hazardous substance as those terms are defined in the Consumer Product Safety Act (15 U.S.C. 2051 et seq.) and Federal Hazardous Substances Act (15 U.S.C. 1261 et seq.) respectively, when subject to a consumer product safety standard or labeling requirement of those Acts, or regulations issued under those Acts by the Consumer Product Safety Commission; and,

(vi) Agricultural or vegetable seed treated with pesticides and labeled in accordance with the Federal Seed Act (7 U.S.C. 1551 et seq.) and the labeling regulations issued under that Act by the Department of Agriculture.

(6) This section does not apply to: (i) Any hazardous waste as such term is defined by the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act of 1976, as amended (42 U.S.C. 6901 et seq.), when subject to regulations issued under that Act by the Environmental Protection Agency;

(ii) Any hazardous substance as such term is defined by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) (42 U.S.C. 9601 et seq.) when the hazardous substance is the focus of remedial or removal action being conducted under CERCLA in accordance with Environmental Protection Agency regulations.

(iii) Tobacco or tobacco products;

(iv) Wood or wood products, including lumber which will not be processed, where the chemical manufacturer or importer can establish that the only hazard they pose to employees is the potential for flammability or combustibility (wood or wood products which have been treated with a hazardous chemical covered by this standard, and wood which may be subsequently sawed or cut, generating dust, are not exempted);

(v) Articles (as that term is defined in paragraph (c) of this section);

(vi) Food or alcoholic beverages which are sold, used, or prepared in a retail establishment (such as a grocery store, restaurant, or drinking place), and foods intended for personal consumption by employees while in the workplace;

(vii) Any drug, as that term is defined in the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 301 et seq.), when it is in solid, final form for direct administration to the patient (e.g., tablets or pills); drugs which are packaged by the chemical manufacturer for sale to consumers in a retail establishment (e.g., over-the-counter drugs); and drugs intended for personal consumption by employees while in the workplace (e.g., first aid supplies);

(viii) Cosmetics which are packaged for sale to consumers in a retail establishment, and cosmetics intended for personal consumption by employees while in the workplace;

(ix) Any consumer product or hazardous substance, as those terms are defined in the Consumer Product Safety Act (15 U.S.C. 2051 et seq.) and Federal Hazardous Substances Act (15 U.S.C. 1261 et seq.) respectively, where the employer can show that it is used in the workplace for the purpose intended by the chemical manufacturer or importer of the product, and the use results in a duration and frequency of exposure which is not greater than the range of exposures that could reasonably be experienced by consumers when used for the purpose intended;

(x) Nuisance particulates where the chemical manufacturer or importer can establish that they do not pose any physical or health hazard covered under this section;

(xi) Ionizing and nonionizing radiation; and,

(xii) Biological hazards.

(c) Definitions.

Article means a manufactured item other than a fluid or particle: (i) which is formed to a specific shape or design during manufacture; (ii) which has end use function(s) dependent in whole or in part upon its shape or design during end use; and (iii) which under normal conditions of use does not release more than very small quantities, e.g., minute or trace amounts of a hazardous chemical (as determined under paragraph (d) of this section), and does not pose a physical hazard or health risk to employees.

Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee.

Chemical means any substance, or mixture of substances.

Chemical manufacturer means an employer with a workplace where chemical(s) are produced for use or distribution.

Chemical name means the scientific designation of a chemical in accordance with the nomenclature system developed by the International Union of Pure and Applied Chemistry (IUPAC) or the Chemical Abstracts Service (CAS) rules of nomenclature, or a name that will clearly identify the chemical for the purpose of conducting a hazard classification.

Classification means to identify the relevant data regarding the hazards of a chemical; review those data to ascertain the hazards associated with the chemical; and decide whether the chemical will be classified as hazardous according to the definition of hazardous chemical in this section. In addition, classification for health and physical hazards includes the determination of the degree of hazard,
1910 OSHA GUIDE

Pictogram means a composition that may include a symbol plus other graphic elements, such as a border, background pattern, or color, that is intended to convey specific information about the hazards of a chemical. Eight pictograms are designated under this standard for application to a hazard category.

Precautionary statement means a phrase that describes recommended measures that should be taken to minimize or prevent adverse effects resulting from exposure to a hazardous chemical, or improper storage or handling.

Product means to manufacture, process, formulate, blend, extract, generate, emit, or repack.

Product identifier means the name or number used for a hazardous chemical on a label or in the SDS. It provides a unique means by which the user can identify the chemical. The product identifier used shall permit cross-references to be made among the list of hazardous chemicals required in the written hazard communication program, the label, and the SDS.

Pyrophoric gas means a chemical in a gaseous state that will ignite spontaneously in air at a temperature of 130 degrees F (54.4 degrees C) or below.

Responsible party means someone who can provide additional information on the hazardous chemical and appropriate emergency procedures, if necessary.

Safety data sheet (SDS) means written or printed material concerning a hazardous chemical that is prepared in accordance with paragraph (g) of this section.

Signal word means a word used to indicate the relative level of severity of hazard and alert the reader to a potential hazard on the label. The signal words used in this section are “danger” and “warning.” “Danger” is used for the more severe hazards, while “warning” is used for the less severe.

Simple asphyxiant means a substance or mixture that displaces oxygen in the ambient atmosphere, and can thus cause oxygen deprivation in those who are exposed, leading to unconsciousness and death.

Specific chemical identity means the chemical name, Chemical Abstracts Service (CAS) Registry Number, or any other information that discloses the precise chemical designation of the substance.

Substance means chemical elements and their compounds in the natural state or obtained by any production process, including any additive necessary to preserve the stability of the product and any impurities deriving from the process used, but excluding any solvent which may be separated without affecting the stability of the substance or changing its composition.

Trade secret means any confidential formula, pattern, process, device, information or compilation of information that is used in an employer's business, and that gives the employer an opportunity to obtain an advantage over competitors who do not know or use it. Appendix E to §1910.1200—Definition of Trade Secret, sets out the criteria to be used in evaluating trade secrets.

Use means to package, handle, react, emit, extract, generate as a byproduct, or transfer.

Work area means a room or defined space in a workplace where hazardous chemicals are produced or used, and where employees are present.

Workplace means an establishment, job site, or project, at one geographical location containing one or more work areas.

(d) Hazard classification. (1) Chemical manufacturers and importers shall evaluate chemicals produced in their workplaces or imported by them to classify the chemicals in accordance with this section. For each chemical, the chemical manufacturer or importer shall determine the hazard classes, and, where appropriate, the category of each class that apply to the chemical being classified. Employers are not required to classify chemicals unless they choose not to rely on the classification performed by the chemical manufacturer or importer for the chemical to satisfy this requirement.

(2) Chemical manufacturers, importers or employers classifying chemicals shall identify and consider the full range of available scientific literature and other evidence concerning the potential hazards. There is no requirement to test the chemical to determine how to classify its hazards. Appendix A to §1910.1200 shall be consulted for classification of health hazards, and Appendix B to §1910.1200 shall be consulted for the classification of physical hazards.

(3) Mixtures. (i) Chemical manufacturers, importers, or employers evaluating chemicals shall follow the procedures described in Appendices A and B to §1910.1200 to classify the hazards of the chemicals, including determinations regarding when mixtures of the classified chemicals are covered by this section.

(ii) When classifying mixtures they produce or import, chemical manufacturers and importers of mixtures may rely on the information provided on the current safety data sheets of the individual ingredients, except where the chemical manufacturer or importer knows, or in the exercise of reasonable diligence should know, that the safety data sheet misstates or omits information required by this section.

(e) Written hazard communication program. (1) Employers shall develop, implement, and maintain at each workplace, a written hazard communication program which at least describes how the criteria specified in paragraphs (f), (g), and (h) of this section for labels and other forms of warning, safety data sheets, and employee information and training will be met, and which also includes the following:

(i) A list of the hazardous chemicals known to be present using a product identifier that is referenced on the appropriate safety data sheet (the list may be compiled for the workplace as a whole or for individual work areas); and,

(ii) The methods the employer will use to inform employees of the hazards of non-routine tasks (for example, the
1910 OSHA GUIDE

cleaning of reactor vessels), and the hazards associated with chemicals contained in unlabeled pipes in their work areas.

(2) Multi-employer workplaces. Employers who produce, use, or store hazardous chemicals at a workplace in such a way that the employees of other employer(s) may be exposed (for example, employees of a construction contractor working on-site) shall additionally ensure that the hazard communication programs developed and implemented under this paragraph (e) include the following:

(i) The methods the employer will use to provide the other employer(s) on-site access to safety data sheets for each hazardous chemical the other employer(s)' employees may be exposed to while working;

(ii) The methods the employer will use to inform the other employer(s) of any precautionary measures that need to be taken to protect employees during the workplace’s normal operating conditions and in foreseeable emergencies; and,

(iii) The methods the employer will use to inform the other employer(s) of the labeling system used in the workplace.

(3) The employer may rely on an existing hazard communication program to comply with these requirements, provided that it meets the criteria established in this paragraph (e).

(4) The employer shall make the written hazard communication program available, upon request, to employees, their designated representatives, the Assistant Secretary and the Director, in accordance with the requirements of 29 CFR 1910.20(e).

(5) Where employees must travel between workplaces during a worksite, i.e., their work is carried out at more than one geographical location, the written hazard communication program may be kept at the primary workplace facility.

(f) Labels and other forms of warning—(1) Labels on shipped containers. The chemical manufacturer, importer, or distributor shall ensure that each container of hazardous chemicals leaving the workplace is labeled, tagged, or marked. Hazards not otherwise classified do not have to be addressed on the container. Where the chemical manufacturer or importer is required to label, tag or mark the following information shall be provided:

(i) Product identifier;

(ii) Signal word;

(iii) Hazard statement(s);

(iv) Pictogram(s);

(v) Precautionary statement(s); and,

(vi) Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party.

(2) The chemical manufacturer, importer, or distributor shall ensure that the information provided under paragraphs (f)(1)(i) through (v) of this section is in accordance with Appendix C to §1910.1200, for each hazard class and associated hazard category for the hazardous chemical, prominently displayed, and in English (other languages may also be included if appropriate).

(3) The chemical manufacturer, importer, or distributor shall ensure that the information provided under paragraphs (f)(1)(i) through (iv) of this section is located together on the label, tag, or mark.

(4) Solid materials. For solid metal (such as a steel beam or a metal casting), solid wood, or plastic items that are not exempted as articles due to their downstream use, or shipments of whole grain, the required label may be transmitted to the customer at the time of the initial shipment, and need not be included with subsequent shipments to the same employer unless the information on the label changes;

(i) The label may be transmitted with the initial shipment itself, or with the safety data sheet that is to be provided prior to or at the time of the first shipment; and,

(ii) This exception to requiring labels on every container of hazardous chemicals is only for the solid material itself, and does not apply to hazardous chemicals used in conjunction with, or known to be present with, the material and to which employees handling the items in transit may be exposed (for example, cutting fluids or pesticides in grains).

(5) Chemical manufacturers, importers, or distributors shall ensure that each container of hazardous chemicals leaving the workplace is labeled, tagged, or marked in accordance with this section in a manner which does not conflict with the requirements of the Hazardous Materials Transportation Act (49 U.S.C. 1801 et seq.) and regulations issued under that Act by the Department of Transportation.

(6) Workplace labeling. Except as provided in paragraphs (f)(7) and (f)(8) of this section, the employer shall ensure that each container of hazardous chemicals in the workplace is labeled, tagged or marked with either:

(i) The information specified under paragraphs (f)(1)(i) through (v) of this section for labels on shipped containers; or,

(ii) Product identifier and words, pictures, symbols, or combination thereof, which provide at least general information regarding the hazards of the chemicals, and which, in conjunction with the other information immediately available to employees under the hazard communication program, will provide employees with the specific information regarding the physical and health hazards of the hazardous chemical.

(7) The employer may use signs, placards, process sheets, batch tickets, operating procedures, or other such written materials in lieu of affixing labels to individual stationary process containers, as long as the alternative method identifies the containers to which it is applicable and conveys the information required by paragraph (f)(6) of this section to be on a label. The employer shall ensure the written materials are readily accessible to the employees in their work area throughout each work shift.

(8) The employer is not required to label portable containers in which hazardous chemicals are transferred from labeled containers, and which are intended only for the
immediate use of the employee who performs the transfer. For purposes of this section, drugs which are dispensed by a pharmacy to a health care provider for direct administration to a patient are exempted from labeling.

(9) The employer shall not remove or deface existing labels on incoming containers of hazardous chemicals, unless the container is immediately marked with the required information.

(10) The employer shall ensure that workplace labels or other forms of warning are legible, in English, and prominently displayed on the container, or readily available in the work area throughout each work shift. Employers having employees who speak other languages may add the information in their language to the material presented, as long as the information is presented in English as well.

(11) Chemical manufacturers, importers, distributors, or employers who become newly aware of any significant information regarding the hazards of a chemical shall revise the labels for the chemical within six months of becoming aware of the new information, and shall ensure that labels on containers of hazardous chemicals shipped after that time contain the new information. If the chemical is not currently produced or imported, the chemical manufacturer, importer, distributor, or employer shall add the information to the label before the chemical is shipped or introduced into the workplace again.

(g) Safety data sheets. (1) Chemical manufacturers and importers shall obtain or develop a safety data sheet for each hazardous chemical they produce or import. Employers shall have a safety data sheet in the workplace for each hazardous chemical which they use.

(2) The chemical manufacturer or importer preparing the safety data sheet shall ensure that it is in English (although the employer may maintain copies in other languages as well), and includes at least the following section numbers and headings, and associated information under each heading, in the order listed (See Appendix D to §1910.1200—Safety Data Sheets, for the specific content of each section of the safety data sheet):

(i) Section 1, Identification;
(ii) Section 2, Hazard(s) identification;
(iii) Section 3, Composition/information on ingredients;
(iv) Section 4, First-aid measures;
(v) Section 5, Fire-fighting measures;
(vi) Section 6, Accidental release measures;
(vii) Section 7, Handling and storage;
(viii) Section 8, Exposure controls/personal protection;
(ix) Section 9, Physical and chemical properties;
(x) Section 10, Stability and reactivity;
(xi) Section 11, Toxicological information;
(xii) Section 12, Ecological information;
(xiii) Section 13, Disposal considerations;
(xiv) Section 14, Transport information;
(xv) Section 15, Regulatory information; and
(xvi) Section 16, Other information, including date of preparation or last revision.
(iv) Wholesale distributors selling hazardous chemicals to employers over-the-counter may also provide safety data sheets upon the request of the employer at the time of the over-the-counter purchase, and shall post a sign or otherwise inform such employers that a safety data sheet is available;

(v) If an employer without a commercial account purchases a hazardous chemical from a retail distributor not required to have safety data sheets on file (i.e., the retail distributor does not have commercial accounts and does not use the materials), the retail distributor shall provide the employer, upon request, with the name, address, and telephone number of the chemical manufacturer, importer, or distributor from which a safety data sheet can be obtained;

(vi) Wholesale distributors shall also provide safety data sheets to employers or other distributors upon request; and,

(vii) Chemical manufacturers, importers, and distributors need not provide safety data sheets to retail distributors that have informed them that the retail distributor does not sell the product to commercial accounts or open the sealed container to use it in their own workplaces.

(8) The employer shall maintain in the workplace copies of the required safety data sheets for each hazardous chemical, and shall ensure that they are readily accessible during each work shift to employees when they are in their work area(s). (Electronic access and other alternatives to maintaining paper copies of the safety data sheets are permitted as long as no barriers to immediate employee access in each workplace are created by such options.)

(9) Where employees must travel between workplaces during a workshift, i.e., their work is carried out at more than one geographical location, the safety data sheets may be kept at the primary workplace facility. In this situation, the employer shall ensure that employees can immediately obtain the required information in an emergency.

(10) Safety data sheets may be kept in any form, including operating procedures, and may be designed to cover groups of hazardous chemicals in a work area where it may be more appropriate to address the hazards of a process rather than individual hazardous chemicals. However, the employer shall ensure that in all cases the required information is provided for each hazardous chemical, and is readily accessible during each work shift to employees when they are in their work area(s).

(11) Safety data sheets shall also be made readily available, upon request, to designated representatives, the Assistant Secretary, and the Director, in accordance with the requirements of §1910.1020(e).

(h) Employee information and training. (1) Employers shall provide employees with effective information and training on hazardous chemicals in their work area at the time of their initial assignment, and whenever a new chemical hazard the employees have not previously been trained about is introduced into their work area. Information and training may be designed to cover categories of hazards (e.g., flammability, carcinogenicity) or specific chemicals. Chemical-specific information must always be available through labels and safety data sheets.
(2) Information. Employees shall be informed of:

(i) The requirements of this section;

(ii) Any operations in their work area where hazardous chemicals are present; and,

(iii) The location and availability of the written hazard communication program, including the required list(s) of hazardous chemicals, and safety data sheets required by this section.

(3) Training. Employee training shall include at least:

(i) Methods and observations that may be used to detect the presence or release of a hazardous chemical in the work area (such as monitoring conducted by the employer, continuous monitoring devices, visual appearance or odor of hazardous chemicals when being released, etc.);

(ii) The physical, health, simple asphyxiation, combustible dust, and pyrophoric gas hazards, as well as hazards not otherwise classified, of the chemicals in the work area;

(iii) The measures employees can take to protect themselves from these hazards, including specific procedures the employer has implemented to protect employees from exposure to hazardous chemicals, such as appropriate work practices, emergency procedures, and personal protective equipment to be used; and,

(iv) The details of the hazard communication program developed by the employer, including an explanation of the labels received on shipped containers and the workplace labeling system used by their employer; the safety data sheet, including the order of information and how employees can obtain and use the appropriate hazard information.

(i) Trade secrets. (1) The chemical manufacturer, importer, or employer may withhold the specific chemical identity, including the chemical name, other specific identification of a hazardous chemical, or the exact percentage (concentration) of the substance in a mixture, from the safety data sheet, provided that:

(i) The claim that the information withheld is a trade secret can be supported;

(ii) Information contained in the safety data sheet concerning the properties and effects of the hazardous chemical is disclosed;

(iii) The safety data sheet indicates that the specific chemical identity and/or percentage of composition is being withheld as a trade secret; and,

(iv) The specific chemical identity and percentage is made available to health professionals, employees, and designated representatives in accordance with the applicable provisions of this paragraph (i).

(2) Where a treating physician or nurse determines that a medical emergency exists and the specific chemical identity and/or specific percentage of composition of a hazardous chemical is necessary for emergency or first-aid treatment, the chemical manufacturer, importer, or employer shall immediately disclose the specific chemical identity or percentage composition of a trade secret chemical to that treating physician or nurse, regardless of the existence of a written statement of need or a confidentiality agreement. The chemical manufacturer, importer, or employer may require a written statement of need and confidentiality agreement, in accordance with the provisions of paragraphs (i)(3) and (4) of this section, as soon as circumstances permit.

(3) In non-emergency situations, a chemical manufacturer, importer, or employer shall, upon request, disclose a specific chemical identity or percentage composition, otherwise permitted to be withheld under paragraph (i)(1) of this section, to a health professional (i.e., physician, industrial hygienist, toxicologist, epidemiologist, or occupational health nurse) providing medical or other occupational health services to exposed employee(s), and to employees or designated representatives, if:

(i) The request is in writing;

(ii) The request describes with reasonable detail one or more of the following occupational health needs for the information:

(A) To assess the hazards of the chemicals to which employees will be exposed;

(B) To conduct or assess sampling of the workplace atmosphere to determine employee exposure levels;

(C) To conduct pre-assignment or periodic medical surveillance of exposed employees;

(D) To provide medical treatment to exposed employees;

(E) To select or assess appropriate personal protective equipment for exposed employees;

(F) To design or assess engineering controls or other protective measures for exposed employees; and,

(G) To conduct studies to determine the health effects of exposure.

(iii) The request explains in detail why the disclosure of the specific chemical identity or percentage composition is essential and that, in lieu thereof, the disclosure of the following information to the health professional, employee, or designated representative, would not satisfy the purposes described in paragraph (i)(3)(ii) of this section:

(A) The properties and effects of the chemical;

(B) Measures for controlling workers' exposure to the chemical;

(C) Methods of monitoring and analyzing worker exposure to the chemical; and,

(D) Methods of diagnosing and treating harmful exposures to the chemical;

(iv) The request includes a description of the procedures to be used to maintain the confidentiality of the disclosed information; and,

(v) The health professional, and the employer or contractor of the services of the health professional (i.e. downstream employer, labor organization, or individual
employee), employee, or designated representative, agree in a written confidentiality agreement that the health professional, employee, or designated representative, will not use the trade secret information for any purpose other than the health need(s) asserted and agree not to release the information under any circumstances other than to OSHA, as provided in paragraph (i)(6) of this section, except as authorized by the terms of the agreement or by the chemical manufacturer, importer, or employer.

(4) The confidentiality agreement authorized by paragraph (i)(3)(iv) of this section:

(i) May restrict the use of the information to the health purposes indicated in the written statement of need;

(ii) May provide for appropriate legal remedies in the event of a breach of the agreement, including stipulation of a reasonable pre-estimate of likely damages; and,

(iii) May not include requirements for the posting of a penalty bond.

(5) Nothing in this standard is meant to preclude the parties from pursuing non-contractual remedies to the extent permitted by law.

(6) If the health professional, employee, or designated representative receiving the trade secret information decides that there is a need to disclose it to OSHA, the chemical manufacturer, importer, or employer who provided the information shall be informed by the health professional, employee, or designated representative prior to, or at the same time as, such disclosure.

(7) If the chemical manufacturer, importer, or employer denies a written request for disclosure of a specific chemical identity or percentage composition, the denial must:

(i) Be provided to the health professional, employee, or designated representative, within thirty days of the request;

(ii) Be in writing;

(iii) Include evidence to support the claim that the specific chemical identity or percent of composition is a trade secret;

(iv) State the specific reasons why the request is being denied; and,

(v) Explain in detail how alternative information may satisfy the specific medical or occupational health need without revealing the trade secret.

(8) The health professional, employee, or designated representative whose request for information is denied under paragraph (i)(3) of this section may refer the request and the written denial of the request to OSHA for consideration.

(9) When a health professional, employee, or designated representative refers the denial to OSHA under paragraph (i)(8) of this section, OSHA shall consider the evidence to determine if:

(i) The chemical manufacturer, importer, or employer has supported the claim that the specific chemical identity or percentage composition is a trade secret;

(ii) The health professional, employee, or designated representative has supported the claim that there is a medical or occupational health need for the information; and,

(iii) The health professional, employee, or designated representative has demonstrated adequate means to protect the confidentiality.

(10)(i) If OSHA determines that the specific chemical identity or percentage composition requested under paragraph (i)(3) of this section is not a "bona fide" trade secret, or that it is a trade secret, but the requesting health professional, employee, or designated representative has a legitimate medical or occupational health need for the information, has executed a written confidentiality agreement, and has shown adequate means to protect the confidentiality of the information, the chemical manufacturer, importer, or employer will be subject to citation by OSHA.

(ii) If a chemical manufacturer, importer, or employer demonstrates to OSHA that the execution of a confidentiality agreement would not provide sufficient protection against the potential harm from the unauthorized disclosure of a trade secret, the Assistant Secretary may issue such orders or impose such additional limitations or conditions upon the disclosure of the requested chemical information as may be appropriate to assure that the occupational health services are provided without an undue risk of harm to the chemical manufacturer, importer, or employer.

(11) If a citation for a failure to release trade secret information is contested by the chemical manufacturer, importer, or employer, the matter will be adjudicated before the Occupational Safety and Health Review Commission in accordance with the Act's enforcement scheme and the applicable Commission rules of procedure. In accordance with the Commission rules, when a chemical manufacturer, importer, or employer continues to withhold the information during the contest, the Administrative Law Judge may review the citation and supporting documentation "in camera" or issue appropriate orders to protect the confidentiality of such matters.

(12) Notwithstanding the existence of a trade secret claim, a chemical manufacturer, importer, or employer shall, upon request, disclose to the Assistant Secretary any information which this section requires the chemical manufacturer, importer, or employer to make available. Where there is a trade secret claim, such claim shall be made no later than at the time the information is provided to the Assistant Secretary so that suitable determinations of trade secret status can be made and the necessary protections can be implemented.

(13) Nothing in this paragraph shall be construed as requiring the disclosure under any circumstances of process information which is a trade secret.

(14) Effective dates. (1) Employers shall train employees regarding the new label elements and safety data sheets format by December 1, 2013.

(2) Chemical manufacturers, importers, distributors, and employers shall be in compliance with all modified provisions of this section no later than June 1, 2015, except:
(i) After December 1, 2015, the distributor shall not ship containers labeled by the chemical manufacturer or importer unless the label has been modified to comply with paragraph (f)(1) of this section.

(ii) All employers shall, as necessary, update any alternative workplace labeling used under paragraph (f)(6) of this section, update the hazard communication program required by paragraph (h)(1), and provide any additional employee training in accordance with paragraph (h)(3) for newly identified physical or health hazards no later than June 1, 2016.

(3) Chemical manufacturers, importers, distributors, and employers may comply with either §1910.1200 revised as of October 1, 2011, or the current version of this standard, or both during the transition period.

NOTE: The effective date of the clarification that the exemption of wood and wood products from the Hazard Communication standard in paragraph (b)(6)(iv) only applies to wood and wood products including lumber which will not be processed, where the manufacturer or importer can establish that the only hazard they pose to employees is the potential for flammability or combustibility, and that the exemption does not apply to wood or wood products which have been treated with a hazardous chemical covered by this standard, and wood which may be subsequently sawed or cut generating dust has been stayed from March 11, 1994 to August 11, 1994.

APPENDIX A TO §1910.1200—HEALTH HAZARD CRITERIA

(MANDATORY)

A.01 GENERAL CLASSIFICATION CONSIDERATIONS

A.01.0.1 The term “hazard classification” is used to indicate that only the intrinsic hazardous properties of chemicals are considered. Hazard classification incorporates three steps:

(a) Identification of relevant data regarding the hazards of a chemical;
(b) Subsequent review of those data to ascertain the hazards associated with the chemical;
(c) Determination of whether the chemical will be classified as hazardous and the degree of hazard.

A.01.0.2 For many hazard classes, the criteria are semi-quantitative or qualitative and expert judgment is required to interpret the data for classification purposes.

A.02 Available Data, Test Methods and Test Data Quality

A.02.0.1 There is no requirement for testing chemicals.

A.02.0.2 The criteria for determining health hazards are test method neutral, i.e., they do not specify particular test methods, as long as the methods are scientifically validated.

A.02.0.3 The term “scientifically validated” refers to the process by which the reliability and the relevance of a procedure are established for a particular purpose. Any test that determines hazardous properties, which is consistent with recognized scientific principles, can be used for purposes of a hazard determination for health hazards. Test conditions need to be standardized so that the results are reproducible with a given substance, and the standardized test yields “valid” data for defining the hazard class of concern.

A.02.0.4 Existing test data are acceptable for classifying chemicals, although expert judgment also may be needed for classification purposes.

A.02.0.5 The effect of a chemical on biological systems is influenced by the physio-chemical properties of the substance and/or ingredients of the mixture and the way in which ingredient substances are biologically available. A chemical need not be classified when it can be shown by conclusive experimental data from scientifically validated test methods that the chemical is not biologically available.

A.02.0.6 For classification purposes, epidemiological data and experience on the effects of chemicals on humans (e.g., occupational data, data from accident databases) shall be taken into account in the evaluation of human health hazards of a chemical.

A.03 Classification Based on Weight of Evidence

A.03.0.1 For some hazard classes, classification results directly when the data satisfy the criteria. For others, classification of a chemical shall be determined on the basis of the total weight of evidence using expert judgment. This means that all available information bearing on the classification of a hazard shall be considered together, including the results of valid in vitro tests, relevant animal data, and human experience such as epidemiological and clinical studies and well-documented case reports and observations.

A.03.0.2 The quality and consistency of the data shall be considered. Information on chemicals related to the material being classified shall be considered as appropriate, as well as site of action and mechanism or mode of action study results. Both positive and negative results shall be considered together in a single weight-of-evidence determination.

A.03.0.3 Positive effects which are consistent with the criteria for classification, whether seen in humans or animals, shall normally justify classification. Where evidence is available from both humans and animals and there is a conflict between the findings, the quality and reliability of the evidence from both sources shall be considered in order to resolve the question of classification. Reliable, good quality human data shall generally have precedence over other data. However, even well-designed and conducted epidemiological studies may lack a sufficient number of subjects to detect relatively rare but significant effects. Therefore, positive results from well-conducted animal studies are not necessarily negated by the lack of positive human experience but require an assessment of the robustness, quality and statistical power of both the human and animal data.

A.03.0.4 Route of exposure, mechanistic information, and metabolism studies are pertinent to determining the relevance of an effect in humans. When such information raises doubt about relevance in humans, a lower classification may be warranted. Where there is scientific evidence demonstrating that the mechanism or mode of action is not relevant to humans, the chemical should not be classified.

A.03.0.5 Both positive and negative results are considered together in the weight of evidence determination. However, a single positive study performed according to good scientific principles and with statistically and biologically significant positive results may justify classification.

A.04 Considerations for the Classification of Mixtures

A.04.0.1 For most hazard classes, the recommended process of classification of mixtures is based on the following sequence:

(a) Where test data are available for the complete mixture, the classification of the mixture will always be based on those data;
(b) Where test data are not available for the mixture itself, the bridging principles described in each health hazard chapter of this appendix shall be considered for classification of the mixture;
(c) If test data are not available for the mixture itself, and the available information is not sufficient to allow application of the above-mentioned bridging principles, then the method(s) described in each chapter for estimating the hazards based on the information known will be applied to classify the mixture (e.g., application of cut-off values/concentration limits).

A.04.0.2 An exception to the above order or precedence is made for Carcinogenicity, Germ Cell Mutagenicity, and Reproductive Toxicity. For these three hazard classes, mixtures shall be classified based upon information on the ingredient substances, unless on a case-by-case basis, justification can be provided for classifying based upon the mixture as a whole. See chapters A.5, A.6, and A.7 for further information on case-by-case bases.

A.04.0.3 Use of cut-off values/concentration limits.

A.04.0.3.1 When classifying an untested mixture based on the hazards of its ingredients, cut-off values/concentration limits for the classified ingredients of the mixture are used for several hazard classes. While the adopted cut-off values/concentration limits adequately identify the hazard for most mixtures, there may be some that contain hazards at very low concentrations than the specified cut-off values/concentration limits, thus pose an identifiable hazard. There may also be cases where the cut-off value/concentration limit is considerably lower than the established non-hazardous level for an ingredient.

A.04.0.3.2 If the classifier has information that the hazard of an ingredient will be evident (i.e., it presents a health risk) below the specified cut-off value/concentration limit, the mixture containing that ingredient shall be classified accordingly.

A.04.0.3.3 In exceptional cases, conclusive data may demonstrate that the hazard of an ingredient will not be evident (i.e., it does not present a health risk) when present at a level above the specified cut-off value/concentration limit(s). In these cases the mixture may be classified according to those data. The data must exclude the possibility that the ingredient will behave in the mixture in a manner that would increase the hazard over that of the pure substance. Furthermore, the mixture must not contain ingredients that would affect that determination.
A.0.4.4 Synergistic or antagonistic effects.

When performing an assessment in accordance with these requirements, the evaluator must take into account all available information about the potential occurrence of synergistic effects among the ingredients of the mixture. Lowering classification of a mixture to a less hazardous category on the basis of antagonistic effects may be done only if the determination is supported by sufficient data.

A.05 Bridging Principles for the Classification of Mixtures Where Test Data Are Not Available for the Complete Mixture

A.0.5.1 Where the mixture itself has not been tested to determine its toxicity, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data shall be used in accordance with the following bridging principles, subject to any specific provisions for mixtures for each hazard class. These principles ensure that the classification process uses the available data to the greatest extent possible in characterizing the hazards of the mixture.

A.0.5.1.1 Dilution.

For mixtures classified in accordance with A.1 through A.10 of this Appendix, if a tested mixture is diluted with a solvent that has an equivalent or lower toxicity classification than the neat toxic original ingredient, and which is not expected to affect the toxicity of other ingredients, then:

(a) The new diluted mixture shall be classified as equivalent to the original tested mixture; or

(b) For classification of acute toxicity in accordance with A.1 of this Appendix, paragraph A.1.3.6 (the additivity formula) shall be applied.

A.0.5.1.2 Batchling.

For mixtures classified in accordance with A.1 through A.10 of this Appendix, the toxicity of a tested production batch of a mixture can be assumed to be substantially equivalent to that of another untested production batch of the same mixture, when produced by or under the control of the same chemical manufacturer, unless there is reason to believe there is significant variation such that the toxicity of the untested batch has changed. If the latter occurs, a new classification is necessary.

A.0.5.1.3 Concentration of mixtures.

For mixtures classified in accordance with A.1, A.2, A.3, A.4, A.5, or A.10 of this Appendix, if a tested mixture is classified in Category 1, and the concentration of the ingredients of the tested mixture that are in Category 1 is increased, the resulting untested mixture shall be classified in Category 1.

A.0.5.1.4 Interpolation within one toxicity category.

For mixtures classified in accordance with A.1, A.2, A.3, A.4, A.5, or A.10 of this Appendix, for three mixtures (A, B, and C) with identical ingredients, where mixtures A and B have been tested and are in the same toxicity category, and where untested mixture C has the same toxicologically active ingredients as mixtures A and B but has concentrations of toxicologically active ingredients intermediate to the concentrations in mixtures A and B, mixture C is assumed to be in the same toxicity category as A and B.

A.0.5.1.5 Substantially similar mixtures.

For mixtures classified in accordance with A.1 through A.10 of this Appendix, given the following set of conditions:

(a) There are two mixtures:

(i) A + B;

(ii) C + B;

(b) The concentration of ingredient B is essentially the same in both mixtures;

(c) The concentration of ingredient A in mixture (i) equals that of ingredient C in mixture (ii);

(d) And data on toxicity for A and C are available and substantially equivalent; i.e., they are in the same hazard category and are not expected to affect the toxicity of B; then

If mixture (i) or (ii) is already classified based on test data, the other mixture can be assigned the same hazard category.

A.0.5.1.6 Aerosols.

For mixtures classified in accordance with A.1, A.2, A.3, A.4, A.5, or A.9 of this Appendix, an aerosol form of a mixture shall be classified in the same hazard category as the tested, non-aerosolized form of the mixture, provided the added propellant does not affect the toxicity of the mixture when spraying.

A.1 ACUTE TOXICITY

A.1.1 Definition

Acute toxicity refers to those adverse effects occurring following oral or dermal administration of a single dose of a substance, or multiple doses given within 24 hours, or an inhalation exposure of 4 hours.

A.1.2 Classification Criteria for Substances

A.1.2.1 Substances can be allocated to one of four toxicity categories based on acute toxicity by the oral, dermal or inhalation route according to the numeric cut-off criteria as shown in Table A.1.1. Acute toxicity values are expressed as (approximate) LD₅₀ (oral, dermal) or LC₅₀ (inhalation) values or as acute toxicity estimates (ATE). See the footnote following Table A.1.1 for further explanation on the application of these values.

<table>
<thead>
<tr>
<th>Exposure route</th>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
<th>Category 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (mg/kg bodyweight) see: Note (a), Note (b)</td>
<td>≤5</td>
<td>>5 and ≤50</td>
<td>>50 and ≤300</td>
<td>>300 and ≤2000</td>
</tr>
<tr>
<td>Dermal (mg/kg bodyweight) see: Note (a), Note (b)</td>
<td>≤50</td>
<td>>50 and ≤200</td>
<td>>200 and ≤1000</td>
<td>>1000 and ≤2000</td>
</tr>
<tr>
<td>Inhalation—Gases (ppmV) see: Note (a), Note (b), Note (c)</td>
<td>≤100</td>
<td>>100 and ≤500</td>
<td>>500 and ≤2500</td>
<td>>2500 and ≤20000</td>
</tr>
<tr>
<td>Inhalation—Vapors (mg/l) see: Note (a), Note (b), Note (c), Note (d)</td>
<td>≤0.5</td>
<td>>0.5 and ≤2.0</td>
<td>>2.0 and ≤10.0</td>
<td>>10.0 and ≤20.0</td>
</tr>
<tr>
<td>Inhalation—Dusts and Mists (mg/l) see: Note (a), Note (b), Note (c)</td>
<td>≤0.5</td>
<td>>0.05 and ≤0.5</td>
<td>>0.5 and ≤1.0</td>
<td>>1.0 and ≤5.0</td>
</tr>
</tbody>
</table>

Note: Gas concentrations are expressed in parts per million per volume (ppmV).

Notes to Table A.1.1:

(a) The acute toxicity estimate (ATE) for the classification of a substance is derived using the LD₅₀/LC₅₀ where available.

(b) The acute toxicity estimate (ATE) for the classification of a substance or ingredient in a mixture is derived using:

(i) the LD₅₀/LC₅₀ where available. Otherwise,

(ii) the appropriate conversion value from Table 1.2 that relates to the results of a range test, or

(iii) the appropriate conversion value from Table 1.2 that relates to a classification category;

(c) Inhalation cut-off values in the table are based on 4 hour testing exposure. Conversion of existing inhalation toxicity data which has been generated according to 1 hour exposure is achieved by dividing by a factor of 2 for gases and vapors and 4 for dusts and mists.

HAZARD COMMUNICATION—11

4/13
TABLE A.1.1—ACUTE TOXICITY HAZARD CATEGORIES AND ACUTE TOXICITY ESTIMATE (ATE) VALUES DEFINING THE RESPECTIVE CATEGORIES, Continued

The terms "dust," "mist" and "vapor" are defined as follows:

(i) Dust: solid particles of a substance or mixture suspended in a gas (usually air);
(ii) Mist: liquid droplets of a substance or mixture suspended in a gas (usually air);
(iii) Vapor: the gaseous form of a substance or mixture released from its liquid or solid state.

A.1.2.3 The preferred test species for evaluation of acute toxicity by the oral and inhalation routes is the rat, while the rabbit is preferred for evaluation of acute dermal toxicity. Test data already generated for the classification of chemicals under existing systems should be accepted when reclassifying these chemicals under the harmonized system. When experimental data for acute toxicity are available in several animal species, scientific judgment should be used in selecting the most appropriate LD50 value from among scientifically validated tests.

A.1.3 Classification Criteria for Mixtures

A.1.3.1 The approach to classification of mixtures for acute toxicity is tiered, and depends upon the amount of information available for the mixture itself and for its ingredients. The flow chart of Figure A.1.1 indicates the process that must be followed:

Figure A.1.1: Tiered approach to classification of mixtures for acute toxicity

<table>
<thead>
<tr>
<th>Test data on the mixture as a whole</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>Sufficient data available on similar mixtures to estimate classification hazards</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Available data for all ingredients</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Other data available to estimate conversion values for classification</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Convey hazards of the known ingredients</td>
</tr>
</tbody>
</table>

A.1.3.2 Classification of mixtures for acute toxicity may be carried out for each route of exposure, but is only required for one route of exposure as long as this route is followed (estimated or tested) for all ingredients and there is no relevant evidence to suggest acute toxicity by multiple routes of exposure, classification is to be conducted for all appropriate routes of exposure. All available information shall be considered. The pictogram and signal word used shall reflect the most severe hazard category; and all relevant hazard statements shall be used.

A.1.3.3 For purposes of classifying the hazards of mixtures in the tiered approach:

(a) The "relevant ingredients" of a mixture are those which are present in concentrations ≥ 1% (weight/weight for solids, liquids, dusts, mists and vapors and volume/volume for gases). If there is reason to suspect that an ingredient present at a concentration < 1% will affect classification of the mixture for acute toxicity, that ingredient shall also be considered relevant. Consideration of ingredients present at a concentration < 1% is particularly important when classifying untested mixtures which contain ingredients that are classified in Category 1 and Category 2;

(b) Where a classified mixture is used as an ingredient of another mixture, the actual or derived acute toxicity estimate (ATE) for that mixture is used when calculating the classification of the new mixture using the formulas in A.1.3.6.1 and A.1.3.6.2.4.

(c) If the converted acute toxicity point estimates for all ingredients of a mixture are within the same category, then the mixture should be classified in that category.

(d) When only range data (or acute toxicity hazard category information) are available for ingredients in a mixture, they may be converted to point estimates in accordance with Table A.1.2 when calculating the classification of the new mixture using the formulas in A.1.3.6.1 and A.1.3.6.2.4.

A.1.3.4 Classification of Mixtures Where Acute Toxicity Test Data Are Available for the Complete Mixture

Where the mixture itself has been tested to determine its acute toxicity, it is classified according to the same criteria as those used for substances, presented in Table A.1.1. If test data for the mixture are not available, the procedures presented below must be followed.

A.1.3.5 Classification of Mixtures Where Acute Toxicity Test Data Are Not Available for the Complete Mixture: Bridging Principles

HAZARD COMMUNICATION—12
4/13
A.1.3.5.1 Where the mixture itself has not been tested to determine its acute toxicity, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data will be used in accordance with the following bridging principles as found in paragraph A.0.5 of this Appendix: Dilution, Batching, Concentration of mixtures, interpolation within one toxicity category, substantially similar mixtures, and Aerosols.

A.1.3.6 Classification of Mixtures Based on Ingredients of the Mixture (Additivity Formula)

A.1.3.6.1 Data available for all ingredients.

The acute toxicity estimate (ATE) of ingredients is considered as follows:

(a) Include ingredients with a known acute toxicity, which will fall into any of the acute toxicity categories, or have an oral or dermal LD₅₀ greater than 2000 but less than or equal to 5000 mg/kg body weight (or the equivalent dose for inhalation);

(b) Ignore ingredients that are presumed not acutely toxic (e.g., water, sugar);

(c) Ignore ingredients if the data available are from a limit dose test (at the upper threshold for Category 4 for the appropriate route of exposure as provided in Table A.1.1) and do not show acute toxicity.

Ingredients that fall within the scope of this paragraph are considered to be ingredients with a known acute toxicity estimate (ATE). See note (b) to Table A.1.1 and paragraph A.1.3.3 for appropriate application of available data to the equation below, and paragraph A.1.3.6.2.

The ATE of the mixture is determined by calculation from the ATE values for all relevant ingredients according to the following formula below for oral, dermal or inhalation toxicity:

$$\frac{100}{\text{ATE}_{\text{mix}}} = \sum \frac{C_i}{n \text{ATE}_i}$$

Where:

- C_i = concentration of ingredient i
- n = ingredients and i is running from 1 to n
- ATE$_i$ = acute toxicity estimate of ingredient i.

A.1.3.6.2 Data are not available for one or more ingredients of the mixture.

A.1.3.6.2.1 Where an ATE is not available for an individual ingredient of the mixture, but available information provides a derived conversion value, the formula in A.1.3.6.1 may be applied. This information may include evaluation of:

(a) Extrapolation between oral, dermal and inhalation acute toxicity estimates. Such an evaluation requires appropriate pharmacodynamic and pharmacokinetic data;

(b) Evidence from human exposure that indicates toxic effects but does not provide lethal dose data;

(c) Evidence from any other toxicity tests/assays available on the substance that indicates toxic effects but does not necessarily provide lethal dose data; or

(d) Data from closely analogous substances using structure/activity relationships.

A.1.3.6.2.2 This approach requires substantial supplemental technical information, and a highly trained and experienced expert, to reliably estimate acute toxicity. If sufficient information is not available to reliably estimate acute toxicity, proceed to the provisions of A.1.3.6.2.3.

A.1.3.6.2.3 In the event that an ingredient with unknown acute toxicity is used in a mixture at a concentration ≥1%, and the mixture has not been classified based on testing of the mixture as a whole, a statement that 90% of the mixture consists of ingredient(s) of unknown acute toxicity is required on the label and safety data sheet in such cases; see Appendix C to this section, Allocation of Label Elements and Appendix D to this section, Safety Data Sheets.)

Where an ingredient with unknown acute toxicity is used in a mixture at a concentration ≥1%, and the mixture is not classified based on testing of the mixture as a whole, a statement that 90% of the mixture consists of ingredient(s) of unknown acute toxicity is required on the label and safety data sheet in such cases; see Appendix C to this section, Allocation of Label Elements and Appendix D to this section, Safety Data Sheets.)

A.1.3.6.2.4 If the total concentration of the relevant ingredient(s) with unknown acute toxicity is ≤10%, then the formula presented in A.1.3.6.1 must be used. If the total concentration of the relevant ingredient(s) with unknown acute toxicity is >10%, the formula presented in A.1.3.6.1 is corrected to adjust for the percentage of the unknown ingredient(s) as follows:

$$100 - \left(\sum \frac{C_{\text{unknown}} \text{ if } 10\%}{\text{ATE}_{\text{mix}}} \right) = \sum \frac{C_i}{n \text{ATE}_i}$$

Table A.1.2—Conversion from Experimentally Obtained Acute Toxicity Range Values (or Acute Toxicity Hazard Categories) to Acute Toxicity Point Estimates for Use in the Formulas for the Classification of Mixtures

<table>
<thead>
<tr>
<th>Exposure routes</th>
<th>Classification category or experimentally obtained acute toxicity range estimate</th>
<th>Converted acute toxicity point estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (mg/kg bodyweight)</td>
<td>0 < Category 1 ≤5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>5 < Category 2 ≤50</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>50 < Category 3 ≤500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>300 < Category 4 ≤2000</td>
<td>500</td>
</tr>
<tr>
<td>Dermal (mg/kg bodyweight)</td>
<td>0 < Category 1 ≤50</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>50 < Category 2 ≤50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>200 < Category 3 ≤1000</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>1000 < Category 4 ≤2000</td>
<td>1100</td>
</tr>
<tr>
<td>Gases (ppmV)</td>
<td>0 < Category 1 ≤100</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>100 < Category 2 ≤500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>500 < Category 3 ≤2500</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>2500 < Category 4 ≤20000</td>
<td>4500</td>
</tr>
<tr>
<td>Vapors (mg/l)</td>
<td>0 < Category 1 ≤0.5</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.5 < Category 2 ≤2.0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>2.0 < Category 3 ≤10.0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>10.0 < Category 4 ≤20.0</td>
<td>11</td>
</tr>
<tr>
<td>Dust/mist (mg/l)</td>
<td>0 < Category 1 ≤0.05</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>0.05 < Category 2 ≤0.5</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.5 < Category 3 ≤1.0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1.0 < Category 4 ≤5.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note: Gas concentrations are expressed in parts per million per volume (ppmV).

A.2 SKIN CORROSION/IRRITATION

A.2.1 Definitions and General Considerations

A.2.1.1 Skin corrosion is the production of irreversible damage to the skin; namely, visible necrosis through the epidermis and into the dermis, following the application of a test substance for up to 4 hours. Corrosive reactions are typified by ulcers, bleeding, bloody scabs, and, by the end of observation at 14 days, by discoloration due to blanching of the skin, complete areas of alopecia, and scars. Histopathology should be considered to evaluate questionable lesions.
Skin irritation is the production of reversible damage to the skin following the application of a test substance for up to 4 hours. A.2.1.2 Skin corrosion/irritation shall be classified using a tiered approach as detailed in figure A.2.1. Emphasis shall be placed upon existing human data (See A.0.2.6), followed by other sources of information. Classification results directly when the data satisfy the criteria in this section. In case the criteria cannot be directly applied, classification of a substance or a mixture is made on the basis of the total weight of evidence (See A.0.3.1). This means that all available information bearing on the determination of skin corrosion/irritation is considered together, including the results of appropriate scientifically validated in-vitro tests, relevant animal data, and human data such as epidemiological and clinical studies and well-documented case reports and observations.

A.2.2 Classification Criteria for Substances Using Animal Test Data

A.2.2.1 Corrosion
A corrosive substance is a chemical that produces destruction of skin tissue, namely, visible necrosis through the epidermis and into the dermis, in at least 1 of 3 tested animals after exposure up to a 4-hour duration. Corrosive reactions are typified by ulcers, bleeding, bloody scabs and, by the end of observation at 14 days, by discoloration due to blanching of the skin, complete areas of alopecia and scars. Histopathology should be considered to discern questionable lesions.

A.2.2.1.2 Three sub-categories of Category 1 are provided in Table A.2.1, all of which shall be regulated as Category 1.

<table>
<thead>
<tr>
<th>Category 1: Corrosive sub-categories</th>
<th>Corrosive in ≥1 of 3 animals</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exposure Observation</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>≤3 min ≤1 h</td>
<td>≤14 days</td>
</tr>
<tr>
<td>1B</td>
<td>>3 min ≤1 h</td>
<td>≤14 days</td>
</tr>
<tr>
<td>1C</td>
<td>>1 h ≤4 h</td>
<td>≤14 days</td>
</tr>
</tbody>
</table>

A.2.2.2 Irritation
A.2.2.2.1 A single irritant category (Category 2) is presented in Table A.2.2. The major criterion for the irritant category is that at least 2 tested animals have a mean score of ≥2.3 ≤4.0.

<table>
<thead>
<tr>
<th>Irritant (Category 2)</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Mean value of ≥2.3 ≤4.0 for erythema/eschar or for edema in at least 2 of 3 tested animals from gradings at 24, 48 and 72 hours after patch removal or, if reactions are delayed, from grades on 3 consecutive days after the onset of skin reactions; or</td>
</tr>
<tr>
<td></td>
<td>(2) Inflammation that persists to the end of the observation period normally 14 days in at least 2 animals, particularly taking into account alopecia (limited area), hyperkeratosis, hyperplasia, and scaling; or</td>
</tr>
</tbody>
</table>

A.2.2.2.2 Animal irritant responses within a test can be quite variable, as they are with corrosion. A separate irritant criterion accommodates cases when there is a significant irritant response but less than the mean score criterion for a positive test. For example, a substance might be designated as an irritant if at least 1 of 3 tested animals shows a very elevated mean score throughout the study, including lesions persisting at the end of an observation period of normally 14 days. Other responses could also fulfill this criterion. However, it should be ascertained that the responses are the result of chemical exposure. Addition of this criterion increases the sensitivity of the classification system.

A.2.2.2.3 Reversibility of skin lesions is another consideration in evaluating irritant responses. When inflammation persists to the end of the observation period in 2 or more test animals, taking into consideration alopecia (limited area), hyperkeratosis, hyperplasia, and scaling, then a chemical should be considered to be an irritant.

A.2.3 Classification Criteria for Substances Using Other Data Elements
A.2.3.1 Existing human and animal data including information from single- or repeated exposure should be the first line of analysis, as they give information directly relevant to effects on the skin. If a substance is highly toxic by the dermal route, a skin corrosion/irritation study may not be practicable since the amount of test substance to be applied would considerably exceed the toxic dose and, consequently, would result in the death of the animals. When observations are made of skin corrosion/irritation in acute toxicity studies and are observed up through the limit dose, these data may be used for classification provided that the dilutions used and species tested are equivalent. In vitro alternatives that have been scientifically validated shall be used to make classification decisions. Solid substances (powders) may become corrosive or irritant when moistened or in contact with moist skin or mucous membranes. Likewise, pH extremes like ≤2 and ≥11.5 may indicate skin effects, especially when associated with significant buffering capacity. Generally, such substances are expected to produce significant effects on the skin. In the absence of any other information, a substance is considered corrosive (Skin Category 1) if it has a pH ≤2 or a pH ≥11.5. However, if consideration of alkali/acid reserve suggests the substance or mixture may not be corrosive despite the low or high pH value, then further evaluation may be necessary. In some cases, enough information may be available from structurally related compounds to make classification decisions.

A.2.3.2 A tiered approach to the evaluation of initial information shall be used (Figure A.2.1) recognizing that all elements may not be relevant in certain cases.

A.2.3.3 The tiered approach explains how to organize information on a substance and to make a weight-of-evidence decision about hazard assessment and hazard classification.

A.2.3.4 All the above information that is available on a substance shall be evaluated. Although information might be gained from the evaluation of single parameters within a tier, there is merit in considering the totality of existing information and making an overall weight of evidence determination. This is especially true when there is information available on some but not all parameters. Emphasis shall be placed upon existing human experience and data, followed by animal experience and testing data, followed by other sources of information, but case-by-case determinations are necessary.

BILLING CODE 4510-26-P
Figure A.2.1: Tiered evaluation of skin corrosion and irritation potential

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameter</th>
<th>Finding</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Existing human or animal data<sup>1</sup></td>
<td>Skin corrosive</td>
<td>Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Not corrosive or no data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>Existing human or animal data<sup>1</sup></td>
<td>Skin irritant</td>
<td>Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Not an irritant or no data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c</td>
<td>Existing human or animal data<sup>1</sup></td>
<td>Not a skin corrosive or skin irritant</td>
<td>Not classified</td>
</tr>
<tr>
<td></td>
<td>No/Insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td>Other, existing skin data in animals<sup>3</sup></td>
<td>Skin corrosive</td>
<td>Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Skin irritant</td>
<td></td>
<td>Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No/Insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td>Existing skin corrosive <i>ex vivo</i> / <i>in vitro</i> data<sup>4</sup></td>
<td>Positive: Skin corrosive</td>
<td>Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Not corrosive or no data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existing skin irritation <i>ex vivo</i> / <i>in vitro</i> data<sup>4</sup></td>
<td>Positive: Skin irritant</td>
<td>Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Negative: Not a skin irritant<sup>3</sup></td>
<td>Not classified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No/Insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td>pH-Based assessment (with consideration of buffering capacity of the chemical, or no buffering capacity data)<sup>5</sup></td>
<td>pH ≤ 2 or ≥ 11.5</td>
<td>Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Not a pH extreme, No pH data or extreme pH with low/no buffering capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:</td>
<td>Validated Structure/Activity Relationship (SAR) models</td>
<td>Skin corrosive</td>
<td>Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No/Insufficient data</td>
<td>Skin irritant</td>
<td>Category 2<sup>2</sup></td>
</tr>
<tr>
<td>6:</td>
<td>Consideration of the total Weight of Evidence<sup>6</sup></td>
<td>Skin corrosive</td>
<td>Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No concern based on consideration of the sum of available data</td>
<td>Skin irritant</td>
<td>Category 2<sup>2</sup></td>
</tr>
<tr>
<td>7:</td>
<td>Not Classified</td>
<td></td>
<td>Not classified</td>
</tr>
</tbody>
</table>

Notes to Figure A.2.1:

1. Evidence of existing human or animal data may be derived from single or repeated exposure(s) in occupational, consumer, transportation, or emergency response scenarios; from ethically-conducted human clinical studies; or from purposely-generated data from animal studies conducted according to scientifically validated test methods (at present, there is no internationally accepted test method for human skin irritation testing).

2. Classify in the appropriate harmonized category, as shown in Tables A.2.1 and A.2.2.
Pre-existing animal data (e.g., from an acute dermal toxicity test or a sensitisation test) should be carefully reviewed to determine if sufficient skin corrosion/irritation evidence is available through other, similar information. For example, classification/categorization may be done on the basis of whether a chemical has or has not produced any skin irritation in an acute dermal toxicity test in animals at the limit dose, or produces very toxic effects in an acute dermal toxicity test in animals. In the latter case, the chemical would be classified as being very hazardous by the dermal route for acute toxicity, and it would be moot whether the chemical is also irritating or corrosive on the skin. It should be kept in mind in evaluating acute dermal toxicity information that the reporting of dermal lesions may be incomplete, testing and observations may be made on a species other than the rabbit, and species may differ in sensitivity in their responses.

Evidence from studies using scientifically validated protocols with isolated human/animal tissues or other, non-tissue-based, though scientifically validated, protocols should be assessed. Examples of scientifically validated test methods for skin corrosion include OECD TG 430 (Transcutaneous Electrical Resistance Test [TER]), TG 431 (Human Skin Model Test), and TG 435 (Membrane Barrier Test Method). OECD TG 439 (Reconstructed Human Epidermis Test Method) is a scientifically validated in vitro test method for skin irritation.

Measurement of pH alone may be adequate, but assessment of acid or alkali reserve (buffering capacity) would be preferable. Presently, there is no scientifically validated and internationally accepted method for assessing this parameter.

All information that is available on a chemical should be considered and an overall determination made on the total weight of evidence. This is especially true when there is conflict in information available on some parameters. Professional judgment should be exercised in making such a determination.

A.2.4.3.4 Particular care shall be taken when classifying certain types of chemicals such as acids and bases, inorganic salts, aldehydes, phenols, and surfactants. The approach explained in A.2.4.3.1 and A.2.4.3.2 might not work given that many of such substances are corrosive or irritant at concentrations <1%. For mixtures containing strong acids or bases the pH should not be used as classification criteria since pH will be a better indicator of corrosion than the concentration limits of Table A.2.3. A mixture containing corrosive or irritant ingredients that cannot be classified based on the additivity approach given in Table A.2.3, due to chemical characteristics that make this approach unworkable, should be classified as Skin Category 1 if it contains >1% of a corrosive ingredient and as Skin Category 2 when it contains ≥3% of an irritant ingredient. Classification of mixtures with ingredients for which the approach in Table A.2.3 does not apply is summarized in Table A.2.4 below.

A.2.4.3.5 On occasion, reliable data may show that the skin corrosion/irritation of an ingredient will not be evident when present at a level above the generic concentration cut-off values mentioned in Tables A.2.3 and A.2.4. In those cases the mixture could be classified according to those data (See Use of cut-off values/concentration limits, paragraph 1.4.3.1 of this Appendix).

A.2.4.3.6 If there are data showing that an ingredient(s) may be corrosive or irritant at a concentration of <1% (corrosive) or <3% (irritant), the mixture shall be classified accordingly (See Use of cut-off values/concentration limits, paragraph 1.4.3.1 of this Appendix).
TABLE A.2.3—CONCENTRATION OF INGREDIENTS OF A MIXTURE CLASSIFIED AS SKIN CATEGORY 1 OR 2 THAT WOULD TRIGGER [Category 1 or 2]

<table>
<thead>
<tr>
<th>Sum of ingredients classified as:</th>
<th>Skin corrosive</th>
<th>Skin irritant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin Category 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥5%</td>
<td></td>
<td>≥1% but <5%.</td>
</tr>
<tr>
<td>Skin Category 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10 x Skin Category 1) x Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 2</td>
<td></td>
<td>≥10%.</td>
</tr>
</tbody>
</table>

TABLE A.2.4—CONCENTRATION OF INGREDIENTS OF A MIXTURE FOR WHICH THE ADDITIVITY APPROACH DOES NOT APPLY, THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURE AS HAZARDOUS TO SKIN

<table>
<thead>
<tr>
<th>Ingredient:</th>
<th>Concentration:</th>
<th>Mixture classified as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid with pH ≤2</td>
<td>≥1%</td>
<td>Category 1.</td>
</tr>
<tr>
<td>Base with pH ≥11.5</td>
<td>≥1%</td>
<td>Category 1.</td>
</tr>
<tr>
<td>Other corrosive (Category 1) ingredients for which additivity does not apply</td>
<td>≥1%</td>
<td>Category 1.</td>
</tr>
<tr>
<td>Other irritant (Category 2) ingredients for which additivity does not apply, including acids and bases</td>
<td>≥3%</td>
<td>Category 2.</td>
</tr>
</tbody>
</table>

A.3 SERIOUS EYE DAMAGE/EYE IRRITATION

A.3.1 Definitions and General Considerations

A.3.1.1 Serious eye damage is the production of tissue damage in the eye, or serious physical decay of vision, following application of a test substance to the anterior surface of the eye, which is not fully reversible within 21 days of application.

Eye irritation is the production of changes in the eye following the application of test substance to the anterior surface of the eye, which are fully reversible within 21 days of application.

A.3.1.2 Serious eye damage/eye irritation shall be classified using a tiered approach as detailed in Figure A.3.1. Emphasis shall be placed upon existing human data (See A.0.2.6), followed by animal data, followed by other sources of information. Classification results directly when the data satisfy the criteria in this section. In case the criteria cannot be directly applied, classification of a substance or a mixture is made on the basis of the total weight of evidence (See A.0.3.1). This means that all available information bearing on the determination of serious eye damage/eye irritation is considered together, including the results of appropriate scientifically validated in vitro tests, relevant animal data, and human data such as epidemiological and clinical studies and well-documented case reports and observations.

A.3.2 Classification Criteria for Substances Using Animal Test Data

A.3.2.1 Irreversible effects on the eye/serious damage to eyes (Category 1).

A single hazard category is provided in Table A.3.1, for substances that have the potential to seriously damage the eyes. Category 1, irreversible effects on the eye, includes the criteria listed below. These observations include animals with grade 4 corneal lesions and other severe reactions (e.g., destruction of cornea) observed at any time during the test, as well as persistent corneal opacity, disorientation of the cornea by a dye substance, adhesion, pannus, and interference with the function of the iris or other effects that impair sight. In this context, persistent lesions are considered those which are not fully reversible within an observation period of normally 21 days. Category 1 also contains substances fulfilling the criteria of corneal opacity ≥3 and/or iritis ≥1.5 detected in a Draize eye test with rabbits, because severe lesions like these usually do not reverse within a 21-day observation period.

TABLE A.3.1—IRREVERSIBLE EYE EFFECTS

A substance is classified as Serious Eye Damage Category 1 (irreversible effects on the eye) when it produces:

(a) at least in one tested animal, effects on the cornea, iris or conjunctiva that are not expected to reverse or have not fully reversed within an observation period of normally 21 days; and/or

(b) at least in 2 of 3 tested animals, a positive response of:

(i) corneal opacity ≥3; and/or

(ii) iritis ≥1.5;

calculated as the mean scores following grading at 24, 48 and 72 hours after instillation of the substance.

A.3.2.2 Reversible effects on the eye (Category 2).

A single category is provided in Table A.3.2 for substances that have the potential to induce reversible eye irritation.

TABLE A.3.2—REVERSIBLE EYE EFFECTS

A substance is classified as Eye irritant Category 2A (irritating to eyes) when it produces in at least 2 of 3 tested animals a positive response of:

(i) corneal opacity ≥1; and/or

(ii) iritis ≥1; and/or

(iii) conjunctival redness ≥2; and/or

(iv) conjunctival edema (chemosis) ≥2

calculated as the mean scores following grading at 24, 48 and 72 hours after instillation of the substance, and which fully reverses within an observation period of normally 21 days.

An eye irritant is considered mildly irritating to eyes (Category 2B) when the effects listed above are fully reversible within 7 days of observation.

A.3.2.3 For those chemicals where there is pronounced variability among animal responses, this information may be taken into account in determining the classification.

A.3.3 Classification Criteria for Substances Using Other Data Elements

A.3.3.1 Existing human and animal data should be the first line of analysis, as they give information directly relevant to effects on the eye. Possible skin corrosion shall be evaluated prior to consideration of serious eye damage/eye irritation in order to avoid testing for local effects on eyes with skin corrosive substances. In vitro alternatives that have been scientifically validated and accepted shall be used to make classification decisions. Likewise, pH extremes like ≤2 and ≥11.5, may indicate serious eye damage, especially when associated with significant buffering capacity. Generally, such substances are expected to produce significant effects on the eyes. In the absence of any other information, a mixture/substance is considered to cause serious eye damage (Eye Category 1) if it has a pH ≤2 or ≥11.5. However, if consideration of acid/alkaline reserve suggests the substance may not have the potential to cause serious eye damage despite the low or high pH value, then further evaluation may be necessary. In some cases enough information may be available from structurally related compounds to make classification decisions.

A.3.3.2 A tiered approach to the evaluation of initial information shall be used where applicable, recognizing that all elements may not be relevant in certain cases (Figure A.3.1).

A.3.3.3 The tiered approach explains how to organize existing information on a substance and to make a weight-of-evidence decision, where appropriate, about hazard assessment and hazard classification.

A.3.3.4 All the above information that is available on a substance shall be evaluated. Although information might be gained from the evaluation of single parameters within a tier, consideration should be given to the totality of existing information and making an overall weight-of-evidence determination. This is especially true when there is conflict in information available on some parameters.

BILLING CODE 4510-26-P
1910 OSHA GUIDE

Figure A.3.1 Evaluation strategy for serious eye damage and eye irritation
(See also Figure A.2.1)

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameter</th>
<th>Finding</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a:</td>
<td>Existing human or animal data, eye<sup>1</sup></td>
<td>→ Serious Eye Damage
→ Eye Irritant</td>
<td>→ Category 1<sup>2</sup>
→ Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No/insufficient data or unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b:</td>
<td>Existing human or animal data, skin corrosion</td>
<td>→ Skin corrosive</td>
<td>→ Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No/insufficient data or unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c:</td>
<td>Existing human or animal data, eye<sup>1</sup></td>
<td>→ Existing data that show that substance does not cause serious eye damage or eye irritation</td>
<td>→ Not Classified</td>
</tr>
<tr>
<td></td>
<td>No/insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td>Other, existing skin/eye data in animals<sup>3</sup></td>
<td>→ Yes; existing data that show that substance may cause serious eye damage or eye irritation</td>
<td>→ Category 1 or Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No/insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td>Existing ex vivo / in vitro data<sup>4</sup></td>
<td>→ Positive: serious eye damage
→ Positive: eye irritant</td>
<td>→ Category 1<sup>2</sup>
→ Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No/insufficient data / negative response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td>pH-Based assessment (with consideration of buffering capacity of the chemical, or no buffering capacity)<sup>3</sup></td>
<td>→ pH ≤ 2 or ≥11.5</td>
<td>→ Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Not a pH extreme, no pH data, or extreme pH with low/no buffering capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:</td>
<td>Validated structure/activity relationship (SAR) models</td>
<td>→ Severe damage to eyes
→ Eye irritant
→ Skin Corrosive</td>
<td>→ Category 1<sup>2</sup>
→ Category 2<sup>2</sup>
→ Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No/insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:</td>
<td>Consideration of the total weight of evidence<sup>6</sup></td>
<td>→ Serious eye damage
→ Eye irritant</td>
<td>→ Category 1<sup>2</sup>
→ Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No concern based on consideration of the sum of available data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:</td>
<td>Not Classified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes to Figure A.3.1:

1. *Evidence of existing human or animal data may be derived from single or repeated exposure(s) in occupational, consumer, transportation, or emergency response scenarios; from ethically-conducted human clinical studies; or from purposefully-generated data from animal studies conducted according to scientifically validated test methods. At present, there are no internationally accepted test methods for human skin or eye irritation testing.*

2. *Classify in the appropriate harmonized category, as shown in Tables A.3.1 and A.3.2.*
BILLING CODE 4510-26-C
A.3.4 Classification Criteria for Mixtures
A.3.4.1 Classification of Mixtures When Data Are Available for the Complete Mixture

A.3.4.1.1 The mixture will be classified using the criteria for substances.

A.3.4.1.2 Unlike other hazard classes, there are alternative tests available for skin corrosivity of certain types of chemicals that can give an accurate result for classification purposes, as well as being simple and relatively inexpensive to perform. When considering testing of the mixture, chemical manufacturers are encouraged to use a tiered weight of evidence strategy as included in the criteria for classification of substances for skin corrosion and serious eye damage and eye irritation to help ensure an accurate classification, as well as avoid unnecessary animal testing. In the absence of any other information, a mixture is considered to cause serious eye damage (Eye Category 1) if it has a pH ≤2 or ≥11.5. However, if consideration of acid/alkaline reserve suggests the substance or mixture may not have the potential to cause serious eye damage despite the low or high pH value, then further evaluation may be necessary.

A.3.4.2 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles

A.3.4.2.1 Where the mixture itself has not been tested to determine its skin corrosivity or potential to cause serious eye damage or eye irritation, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data will be used in accordance with the following bridging principles, as found in paragraph A.0.5 of this Appendix: Dilution, Batchling, Concentration of mixtures, Interpolation within one toxicity category, Substantially similar mixtures, and Aerosols.

A.3.4.3 Classification of Mixtures When Data Are Available for All Ingredients or Only for Some Ingredients of the Mixture

A.3.4.3.1 For purposes of classifying the eye corrosion/irritation hazards of mixtures in the tiered approach:

The "relevant ingredients" of a mixture are those which are present in concentrations >1% (weight/weight for solids, liquids, dusts, mists and vapors and volume/volume for gases.) If the classifier has reason to suspect that an ingredient present at a concentration <1% will affect classification of the mixture for eye corrosion/irritation, that ingredient shall also be considered relevant.

A.3.4.3.2 In general, the approach to classification of mixtures as seriously damaging to the eye or eye irritant when data are available on the ingredients, but not on the mixture as a whole, is based on the theory of additivity, such that each corrosive or irritant ingredient contributes to the overall irritant or corrosive properties of the mixture in proportion to its potency and concentration. A weighting factor of 10 is used for corrosive ingredients when they are present at a concentration below the concentration limit for classification with Category 1, but are at a concentration that will contribute to the classification of the mixture as an irritant. The mixture is classified as seriously damaging to the eye or eye irritant when the sum of the concentrations of such ingredients exceeds a threshold cut-off value/concentration limits. A.3.4.3.3 Table A.3.3 provides the cut-off value/concentration limits to be used to determine if the mixture should be classified as seriously damaging to the eye or eye irritant.

A.3.4.3.4 Particular care must be taken when classifying certain types of chemicals such as acids and bases, inorganic salts, aldehydes, phenols, and surfactants. The approach explained in A.3.4.3.1 and A.3.4.3.2 might not work given that many of such substances are corrosive or irritant at concentrations <1%. For mixtures containing strong acids or bases, the pH should be used as classification criteria (See A.3.4.1) since pH will be a better indicator of serious eye damage than the concentration limits of Table A.3.3. A mixture containing corrosive or irritant ingredients that cannot be classified based on the additivity approach applied in Table A.3.3 due to chemical characteristics that make this approach unworkable, should be classified as Eye Category 1 if it contains ≥1% of a corrosive ingredient and as Eye Category 2 when it contains ≥3% of an irritant ingredient. Classification of mixtures with ingredients for which the approach in Table A.3.3 does not apply is summarized in Table A.3.4.

A.3.4.3.5 On occasion, reliable data may show that the reversible/irreversible eye effects of an ingredient will not be evident when present at a level above the generic cut-off values/concentration limits mentioned in Tables A.3.3 and A.3.4. In these cases the mixture could be classified according to those data (See also A.0.4.3 Use of cut-off values/concentration limits). On occasion, when it is expected that the skin corrosion/irritation or the reversible/irreversible eye effects of an ingredient will not be evident when present at a level above the generic concentration/cut-off levels mentioned in Tables A.3.3 and A.3.4, testing of the mixture may be considered. In those cases, the tiered weight of evidence strategy should be applied as referred to in section A.3.3, Figure A.3.1 and explained in detail in this chapter.

A.3.4.3.6 If there are data showing that (an) ingredient(s) may be corrosive or irritant at a concentration of <1% (corrosive) or <3% (irritant), the mixture should be classified accordingly (See also paragraph A.0.4.3 Use of cut-off values/concentration limits).

| Table A.3.3—Concentration of Ingredients of a Mixture Classified as Skin Category 1 and/or Eye Category 1 or 2 That Would Trigger Classification of the Mixtures as Hazardous to the Eye |
|---|---|---|
| Sum of ingredients classified as: | Concentration triggering classification of a mixture as: | |
| | Irreversible eye effects | Reversible eye effects |
| Eye or Skin Category 1 | ≥2% | ≥1% but <3% |
| Eye Category 2 (10 x Eye Category 1) + Eye Category 2 | ≥3% | ≥1% but <3% |

A.3.4.3.7 Note that these concentration limits are based on the assumption that any ingredient that is present at a concentration that is greater than or equal to the cut-off limit will contribute to the classification of the mixture as corrosive or irritant.

1 Pre-existing animal data should be carefully reviewed to determine if sufficient skin or eye corrosion/irritation evidence is available through other, similar information.

2 Evidence from studies using scientifically validated protocols with isolated human/animal tissues or other, non-tissue-based, though scientifically validated protocols should be assessed. Examples of scientifically validated test methods for identifying eye corrosives and severe irritants (i.e., Serious Eye Damage) include OECD TG 437 (Basic Corneal Opacity) and Permeability (BCOP) and TG 438 (Isolated Chicken Eye). Positive test results from a scientifically validated in vitro test for skin corrosion would likely also lead to a conclusion to classify as causing Serious Eye Damage.

3 Measurement of pH alone may be adequate, but assessment of acid or alkali reserve (buffering capacity) would be preferable.

4 All information that is available on a chemical should be considered and an overall determination made on the total weight of evidence. This is especially true when there is conflict in information available on some parameters. The weight of evidence including information on skin irritation could lead to classification of eye irritation. It is recognized that not all skin irritants are eye irritants as well. Professional judgment should be exercised in making such a determination.
1910 OSHA GUIDE

TABLE A.3.3—CONCENTRATION OF INGREDIENTS OF A MIXTURE CLASSIFIED AS SKIN CATEGORY 1 AND/OR EYE CATEGORY 1 OR 2 THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURES AS HAZARDOUS TO THE EYE, Continued

<table>
<thead>
<tr>
<th>Sum of ingredients classified as:</th>
<th>Concentration triggering classification of a mixture as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x (Skin Category 1 + Eye Category 1 + Eye Category 2)</td>
<td>≥10%</td>
</tr>
</tbody>
</table>

Note: A mixture may be classified as Eye Category 2B in cases when all relevant ingredients are classified as Eye Category 2B.

TABLE A.3.4—CONCENTRATION OF INGREDIENTS OF A MIXTURE FOR WHICH THE ADDITIVITY APPROACH DOES NOT APPLY, THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURE AS HAZARDOUS TO THE EYE

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
<th>Mixture classified as: Eye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid with pH ≥2</td>
<td>≥1%</td>
<td>Category 1</td>
</tr>
<tr>
<td>Base with pH ≥11.5</td>
<td>≥1%</td>
<td>Category 1</td>
</tr>
<tr>
<td>Other corrosive (Category 1) ingredients for which additivity does not apply</td>
<td>≥3%</td>
<td>Category 2</td>
</tr>
<tr>
<td>Other irritant (Category 2) ingredients for which additivity does not apply, including acids and bases</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.4 RESPIRATORY OR SKIN SENSITIZATION

A.4.1 Definitions and General Considerations

A.4.1.1 Respiratory sensitizer means a chemical that will lead to hypersensitivity of the airways following inhalation of the chemical. Skin sensitizer means a chemical that will lead to an allergic response following skin contact.

A.4.1.2 For the purpose of this chapter, sensitization includes two phases: the first phase is induction of specialized immunological memory in an individual by exposure to an allergen. The second phase is elicitation, i.e., production of a cell-mediated or antibody-mediated allergic response by exposure of a sensitized individual to an allergen.

A.4.1.3 For respiratory sensitization, the pattern of induction followed by elicitation phases is shared in common with skin sensitization. For skin sensitization, an induction phase is required in which the immune system learns to react; clinical symptoms can then arise when subsequent exposure is sufficient to elicit a visible skin reaction (elicitation phase). As a consequence, predictive tests usually follow this pattern in which there is an induction phase, the response to which is measured by a standardized elicitation phase, typically involving a patch test. The local lymph node assay is the exception, directly measuring the induction response. Evidence of skin sensitization in humans normally is assessed by a diagnostic patch test.

A.4.1.4 Usually, for both skin and respiratory sensitization, lower levels are necessary for elicitation than are required for induction.

A.4.1.5 The hazard class "respiratory or skin sensitization" is differentiated into:

(a) Respiratory sensitization; and
(b) Skin sensitization.

A.4.2 Classification Criteria for Substances

A.4.2.1 Respiratory Sensitizers

A.4.2.1.1 Hazard Categories.

A.4.2.1.1.1 Effects seen in either humans or animals will normally justify classification in a weight of evidence approach for respiratory sensitizers. Substances may be allocated to one of the two sub-categories 1A or 1B using a weight of evidence approach in accordance with the criteria given in Table A.4.1 and on the basis of reliable and good quality evidence from human cases or epidemiological studies and/or observations from appropriate studies in experimental animals.

A.4.2.1.2 Where data are not sufficient for sub-categorization, respiratory sensitizers shall be classified in Category 1.

TABLE A.4.1—HAZARD CATEGORY AND SUB-CATEGORIES FOR RESPIRATORY SENSITIZERS

<table>
<thead>
<tr>
<th>Category 1</th>
<th>Respiratory sensitizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-category 1A</td>
<td>A substance is classified as a respiratory sensitizer.</td>
</tr>
<tr>
<td>(a) If there is evidence in humans that the substance can lead to specific respiratory hypersensitivity and/or</td>
<td></td>
</tr>
<tr>
<td>(b) If there are positive results from an appropriate animal test.1</td>
<td></td>
</tr>
<tr>
<td>Sub-category 1B</td>
<td>Substances showing a high frequency of occurrence in humans; or a probability of occurrence of a high sensitization rate in humans based on animal or other tests.1 Severity of reaction may also be considered.</td>
</tr>
</tbody>
</table>

| Sub-category 1B | Substances showing a low to moderate frequency of occurrence in humans; or a probability of occurrence of a low to moderate sensitization rate in humans based on animal or other tests.1 Severity of reaction may also be considered. |

1 At this writing, recognized and validated animal models for the testing of respiratory hypersensitivity are not available. Under certain circumstances, data from animal studies may provide valuable information in a weight of evidence assessment.

A.4.2.2 Human evidence.

A.4.2.2.1 Evidence that a substance can lead to specific respiratory hypersensitivity will normally be based on human experience. In this context, hypersensitivity is normally seen as asthma, but other hypersensitivity reactions such as rhinitis/conjunctivitis and eczematous are also considered. The condition will have the clinical character of an allergic reaction. However, immunological mechanisms do not have to be demonstrated.

A.4.2.2.2 When considering the human evidence, it is necessary that in addition to the evidence from the cases, the following be taken into account:

(a) The size of the population exposed;
(b) The extent of exposure.

A.4.2.2.3 The evidence referred to above could be:

(a) Clinical history and data from appropriate lung function tests related to exposure to the substance, confirmed by other supportive evidence which may include:

(i) In vivo immunological test (e.g., skin prick test);
(ii) In vitro immunological test (e.g., serological analysis);
(iii) Studies that may indicate other specific hypersensitivity reactions where immunological mechanisms of action have not been proven, e.g., repeated low-level irritation, pharmacologically mediated effects;
(iv) A chemical structure related to substances known to cause respiratory hypersensitivity;
(b) Data from positive bronchial challenge tests with the substance conducted according to accepted guidelines for the determination of a specific hypersensitivity reaction.
TABLE A.4.2—HAZARD CATEGORY AND SUB-CATEGORIES FOR SKIN SENSITIZERS, Continued

A.4.2.2.2 Human evidence.
A.4.2.2.2.1 Human evidence for sub-category 1A may include:
(a) Positive responses at ≤500 µg/cm²(Human Repeat insult Patch Test (HR IPT), Human Maximization Test (HMT)—induction threshold);
(b) Diagnostic patch test data where there is a relatively high and substantial incidence of reactions in a defined population in relation to relatively low exposure;
(c) Other epidemiological evidence where there is a relatively high and substantial incidence of allergic contact dermatitis in relation to relatively low exposure.
A.4.2.2.2.2 Human evidence for sub-category 1B may include:
(a) Positive responses at ≤500 µg/cm²(HR IPT, HMT—induction threshold);
(b) Diagnostic patch test data where there is a relatively low but substantial incidence of reactions in a defined population in relation to relatively high exposure;
(c) Other epidemiological evidence where there is a relatively low but substantial incidence of allergic contact dermatitis in relation to relatively high exposure.
A.4.2.2.3 Animal studies
A.4.2.2.3.1 For Category 1, when an adjuvant type test method for skin sensitization is used, a response of at least 30% of the animals is considered as positive. For a non-adjuvant Guinea pig test method a response of at least 15% of the animals is considered positive. For Category 1, a stimulation index of three or more is considered a positive response in the local lymph node assay.a

*Tests methods for skin sensitization are described in OECD Guideline 406 (the Guinea Pig Maximization test and the Buehler guinea pig test) and Guideline 429 (Local Lymph Node Assay). Other methods may be used provided that they are scientifically validated. The Mouse Ear Swelling Test (MEST), appears to be a reliable screening test to detect moderate to strong sensitizers, and can be used, in accordance with professional judgment, as a first stage in the assessment of skin sensitization potential.

A.4.2.2.3.2 Animal test results for sub-category 1A can include data with values indicated in Table A.4.4 below:

<table>
<thead>
<tr>
<th>Assay</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local lymph node assay</td>
<td>EC3 value ≥2%</td>
</tr>
<tr>
<td>Guinea pig maximization test</td>
<td>>30% responding at ≤0.1% intradermal induction dose or >60% responding at >0.1% to ≤1% intradermal induction dose.</td>
</tr>
<tr>
<td>Buehler assay</td>
<td>≥15% responding at ≤0.2% topical induction dose or ≥60% responding at >0.2% to ≤20% topical induction dose.</td>
</tr>
</tbody>
</table>

Note: EC3 refers to the estimated concentration of test chemical required to induce a stimulation index of 3 in the local lymph node assay.

<table>
<thead>
<tr>
<th>Assay</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local lymph node assay</td>
<td>EC3 value ≥2%</td>
</tr>
<tr>
<td>Guinea pig maximization test</td>
<td>>30% to <60% responding at >0.1% to ≤1% intradermal induction dose or >30% responding at >1% intradermal induction dose.</td>
</tr>
<tr>
<td>Buehler assay</td>
<td>≥15% to <80% responding at >0.2% to ≤20% topical induction dose or</td>
</tr>
</tbody>
</table>
TABLE A.4.4—ANIMAL TEST RESULTS FOR SUB-CATEGORY 1B.

<table>
<thead>
<tr>
<th>Assay</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥15% responding at >20% topical induction dose.</td>
</tr>
</tbody>
</table>

Note: ECS refers to the estimated concentration of test chemical required to induce a stimulation index of 3 in the local lymph node assay.

A.4.2.2.4 Specific considerations.

A.4.2.2.4.1 For classification of a substance, evidence shall include one or more of the following using a weight of evidence approach:

(a) Positive data from patch testing, normally obtained in more than one dermatology clinic;

(b) Epidemiological studies showing allergic contact dermatitis caused by the substance. Situations in which a high proportion of those exposed exhibit characteristic symptoms are to be looked at with special concern, even if the number of cases is small;

(c) Positive data from appropriate animal studies;

(d) Positive data from experimental studies in man (See paragraph A.0.2.6 of this Appendix);

(e) Well documented episodes of allergic contact dermatitis, normally obtained in more than one dermatology clinic;

(f) Severity of reaction.

A.4.2.2.4.2 Evidence from animal studies is usually much more reliable than evidence from human exposure. However, in cases where evidence is available from both sources, and there is conflict between the results, quality and reliability of the evidence from both sources must be assessed in order to resolve the question of classification on a case-by-case basis. Normally, human data are not generated in controlled experiments with volunteers for the purpose of hazard classification but rather as part of risk assessment to confirm lack of effects seen in animal tests. Consequently, positive human data on skin sensitization are usually derived from case-control or other, less defined studies. Evaluation of human data must, therefore, be carried out with caution as the frequency of cases reflect, in addition to the inherent properties of the substances, factors such as the exposure situation, bioavailability, individual predisposition and preventive measures taken. Negative human data should not normally be used to negate positive results from animal studies. For both animal and human data, consideration should be given to the impact of vehicle.

A.4.2.2.4.3 If none of the above-mentioned conditions are met, the substance need not be classified as a skin sensitizer. However, a combination of two or more indicators of skin sensitization, as listed below, may alter the decision. This shall be considered on a case-by-case basis.

(a) Isolated episodes of allergic contact dermatitis;

(b) Epidemiological studies of limited power, e.g., where chance, bias or confounders have not been ruled out fully with reasonable confidence;

(c) Data from animal tests, performed according to existing guidelines, which do not meet the criteria for a positive result described in A.4.2.2.3, but which are sufficiently close to the limit to be considered significant;

(d) Positive data from non-standard methods;

(e) Positive results from close structural analogues.

A.4.2.2.4.4 Immunological contact urticaria.

A.4.2.2.4.4.1 Substances meeting the criteria for classification as respiratory sensitizers may, in addition, cause immunological contact urticaria. Consideration shall be given to classifying these substances as skin sensitizers.

A.4.2.2.4.4.2 Substances which cause immunological contact urticaria without meeting the criteria for respiratory sensitizers shall be considered for classification as skin sensitizers.

A.4.2.2.4.4.3 There is no recognized animal model available to identify substances which cause immunological contact urticaria. Therefore, classification will normally be based on human evidence, similar to that for skin sensitization.

A.4.3 Classification Criteria for Mixtures

A.4.3.1 Classification of Mixtures When Data Are Available for the Complete Mixture

When reliable and good quality evidence, as described in the criteria for substances, from human experience or appropriate studies in experimental animals, is available for the mixture, the mixture shall be classified by weight of evidence evaluation of these data. Care must be exercised in evaluating data on mixtures that the dose used does not render the results inconclusive.

A.4.3.2 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles

A.4.3.2.1 Where the mixture itself has not been tested to determine its sensitizing properties, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data will be used in accordance with the following agreed bridging principles as found in paragraph A.0.5 of this Appendix. Dilution, batching, Concentration of mixtures, Interpolation, Substantially similar mixtures, and Aerosols.

A.4.3.3 Classification of Mixtures When Data Are Available for All Ingredients or Only for Some Ingredients of the Mixture

The mixture shall be classified as a respiratory or skin sensitizer when at least one ingredient has been classified as a respiratory or skin sensitizer and it is present at or above the appropriate cut-off value/concentration limit for the specific endpoint as shown in Table A.4.5.

TABLE A.4.5—CUT-OFF VALUES/CONCENTRATION LIMITS OF INGREDIENTS OF A MIXTURE CLASSIFIED AS EITHER RESPIRATORY SENSITIZERS OR SKIN SENSITIZERS THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURE

<table>
<thead>
<tr>
<th>Ingredient classified as:</th>
<th>Solid/liquid</th>
<th>Gas</th>
<th>All physical states</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Sensitizer</td>
<td>≥0.1%</td>
<td>≥0.1%</td>
<td>—</td>
</tr>
<tr>
<td>Category 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory Sensitizer</td>
<td>≥0.1%</td>
<td>≥0.1%</td>
<td>—</td>
</tr>
<tr>
<td>Category 1A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory Sensitizer</td>
<td>≥1.0%</td>
<td>≥0.2%</td>
<td>—</td>
</tr>
<tr>
<td>Sub-category 1B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin Sensitizer</td>
<td>—</td>
<td>—</td>
<td>≥0.1%</td>
</tr>
<tr>
<td>Category 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin Sensitizer</td>
<td>—</td>
<td>—</td>
<td>≥0.1%</td>
</tr>
<tr>
<td>Sub-category 1A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin Sensitizer</td>
<td>—</td>
<td>—</td>
<td>≥1.0%</td>
</tr>
<tr>
<td>Sub-category 1B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.5 GERM CELL MUTAGENICITY

A.5.1 Definitions and General Considerations

A.5.1.1 A mutation is defined as a permanent change in the amount or structure of the genetic material in a cell. The term mutation applies both to heritable genetic changes that may be manifested at the phenotypic level and to the underlying DNA modifications when known (including, for example, specific base pair changes and chromosomal translocations). The term mutagenic and mutagen will be used for agents giving rise to an increased occurrence of mutations in populations of cells and/or organisms.

A.5.1.2 The more general terms genotoxic and genotoxicity apply to agents or processes which alter the structure, information content, or segregation of DNA, including those which cause DNA damage by interfering with normal replication processes, or which in a non-physiological manner (temporarily) alter its replication. Genotoxicity test results are usually taken as indicators for mutagenic effects.

A.5.1.3 This hazard class is primarily concerned with chemicals that may cause mutations in the germ cells of humans that can be transmitted to the
progeny. However, mutagenicity/genotoxicity tests in vitro and in mammalian somatic cells in vivo are also considered in classifying substances and mixtures within this hazard class.

A.5.2 Classification Criteria for Substances

A.5.2.1 The classification system provides for two different categories of germ cell mutagens to accommodate the weight of evidence available. The two-category system is described in the Figure A.5.1.

FIGURE A.5.1—HAZARD CATEGORIES FOR GERM CELL MUTAGENS

CATEGORY 1: Substances known to induce heritable mutations or to be regarded as if they induce heritable mutations in the germ cells of humans.

Category 1A: Substances known to induce heritable mutations in germ cells of humans.

Positive evidence from human epidemiological studies.

Category 1B: Substances which should be regarded as if they induce heritable mutations in the germ cells of humans.

(a) Positive result(s) from in vivo heritable germ cell mutagenicity tests in mammals; or

(b) Positive result(s) from in vivo somatic cell mutagenicity tests in mammals, in combination with some evidence that the substance has potential to cause mutations to germ cells. This supporting evidence may, for example, be derived from mutagenicity/genotoxicity tests in germ cells in vivo, or by demonstrating the ability of the substance or its metabolite(s) to interact with the genetic material of germ cells; or

(c) Positive results from tests showing mutagenic effects in the germ cells of humans, without demonstration of transmission to progeny; for example, an increase in the frequency of aneuploidy in sperm cells of exposed people.

CATEGOR:Y 2: Substances which cause concern for humans owing to the possibility that they may induce heritable mutations in the germ cells of humans.

Positive evidence obtained from experiments in mammals and/or in some cases from in vitro experiments, obtained from:

(a) Somatic cell mutagenicity tests in vivo, in mammals; or

(b) Other in vivo somatic cell genotoxicity tests which are supported by positive results from in vitro mutagenicity assays.

Note: Substances which are positive in in vitro mammalian mutagenicity assays, and which also show chemical structure activity relationships to known germ cell mutagens, should be considered for classification as Category 2 mutagens.

A.5.2.2 Specific considerations for classification of substances as germ cell mutagens:

A.5.2.2.1 To arrive at a classification, test results are considered from experiments determining mutagenic and/or genotoxic effects in germ and/or somatic cells of exposed animals. Mutagenic and/or genotoxic effects determined in in vitro tests shall also be considered.

A.5.2.2.2 The system is hazard based, classifying chemicals on the basis of their intrinsic ability to induce mutations in germ cells. The scheme is, therefore, not meant for the (quantitative) risk assessment of chemical substances.

A.5.2.2.3 Classification for heritable effects in human germ cells is made on the basis of scientifically validated tests. Evaluation of the test results shall be based on expert judgment and all the available evidence shall be weighed for classification.

A.5.2.2.4 The classification of substances shall be based on the total weight of evidence available, using expert judgment. In those instances where a single well-conducted test is used for classification, it shall provide clear and unambiguously positive results. The relevance of the route of exposure used in the study of the substance compared to the route of human exposure should also be taken into account.

A.5.3 Classification Criteria for Mixtures

It should be noted that the classification criteria for health hazards usually include a tiered scheme in which test data available on the complete mixture are considered as the first tier in the evaluation, followed by the applicable bridging principles, and lastly, cut-off values/concentration limits or additivity. However, this approach is not used for Germ Cell Mutagenicity.

These criteria for Germ Cell Mutagenicity consider the cut-off values/concentration limits as the primary tier and allow the classification to be modified only in a case-by-case evaluation based on available test data for the mixture as a whole.

A.5.3.1 Classification of Mixtures When Data Are Available for All Ingredients or Only for Some Ingredients of the Mixture

A.5.3.1.1 Classification of mixtures shall be based on the available test data for the individual ingredients of the mixture using cut-off values/concentration limits for the ingredients classified as germ cell mutagens.

A.5.3.1.2 The mixture will be classified as a mutagen when at least one ingredient has been classified as a Category 1A, Category 1B or Category 2 mutagen and is present at or above the appropriate cut-off value/concentration limit as shown in Table A.5.1 below for Category 1 and 2 respectively.

TABLE A.5.1—CUT-OFF VALUES/CONCENTRATION LIMITS OF INGREDIENTS OF A MIXTURE CLASSIFIED AS GERM CELL MUTAGENS THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURE

<table>
<thead>
<tr>
<th>Ingredient classified as:</th>
<th>Category 1 mutagen</th>
<th>Category 2 mutagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1A/B mutagen</td>
<td>≥0.1%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Category 2 mutagen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The cut-off values/concentration limits in the table above apply to solids and liquids (w/v units) as well as gases (v/v units).

A.5.3.2 Classification of Mixtures When Data Are Available for the Mixture Itself

The classification may be modified on a case-by-case basis based on the available test data for the mixture as a whole. In such cases, the test results for the mixture as a whole must be shown to be conclusive taking into account dose and other factors such as duration, observations and analysis (e.g. statistical analysis, test sensitivity) of germ cell mutagenicity test systems.

A.5.3.3 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles

A.5.3.3.1 Where the mixture itself has not been tested to determine its germ cell mutagenicity hazard, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data will be used in accordance with the following bridging principles as found in paragraph A.0.5 of this Appendix: Dilution, Batching, and Substantially similar mixtures.

A.5.4 Examples of Scientifically Validated Test Methods

A.5.4.1 Examples of in vivo heritable germ cell mutagenicity tests are:

(a) Rodent dominant lethal mutation test (OECD 478)
(b) Mouse heritable translocation assay (OECD 485)
(c) Mouse specific locus test

A.5.4.2 Examples of in vivo somatic cell mutagenicity tests are:

(a) Mammalian bone marrow chromosome aberration test (OECD 475)
(b) Mouse spot test (OECD 484)
(c) Mammalian erythocyte micronucleus test (OECD 474)

A.5.4.3 Examples of mutagenicity/genotoxicity tests in germ cells are:

(a) Mutagenicity tests:
 (i) Mammalian spermatogonial chromosome aberration test (OECD 483)
 (ii) Spermatic micronucleus assay
(b) Genotoxicity tests:
 (i) Sister chromatid exchange analysis in spermatogonia
 (ii) Unscheduled DNA synthesis test (UDS) in testicular cells

A.5.4.4 Examples of genotoxicity tests in somatic cells are:

(a) Liver Unscheduled DNA Synthesis (UDS) in vivo (OECD 486)
(b) Mammalian bone marrow Sister Chromatid Exchanges (SCE)

A.5.4.5 Examples of in vitro mutagenicity tests are:

(a) In vitro mammalian chromosome aberration test (OECD 473)
CARCINOGENICITY

A.6.1 Definitions

Carcinogen means a substance or a mixture of substances which induce cancer or increase its incidence. Substances and mixtures which have induced benign and malignant tumors in well-performed experimental studies on animals are considered also to be presumed or suspected human carcinogens unless there is strong evidence that the mechanism of tumor formation is not relevant for humans.

Classification of a substance or mixture as posing a carcinogenic hazard is based on its inherent properties and does not provide information on the level of the human cancer risk which the use of the substance or mixture may represent.

A.6.2 Classification Criteria for Substances

See Non-mandatory Appendix F Part A for further guidance regarding hazard classification for carcinogenicity. This appendix is consistent with the GHS and is provided as guidance excerpted from the International Agency for Research on Cancer (IARC) "Monographs on the Evaluation of Carcinogenic Risks to Humans" (2008).

A.6.2.1 For the purpose of classification for carcinogenicity, substances are allocated to one of two categories based on strength of evidence and additional weight of evidence considerations. In certain instances, route-specific classification may be warranted.

FIGURE A.6.1—HAZARD CATEGORIES FOR CARCINOGENS

CATEGORY 1: Known or presumed human carcinogens.

The classification of a substance as a Category 1 carcinogen is done based on the basis of epidemiological and/or animal data. This classification is further distinguished on the basis of whether the evidence for classification is largely from human data (Category 1A) or from animal data (Category 1B):

Category 1A: Known to have carcinogenic potential for humans. Classification in this category is largely based on human evidence.

Category 1B: Presumed to have carcinogenic potential for humans. Classification in this category is largely based on animal evidence.

The classification of a substance in Category 1A and 1B is based on strength of evidence together with weight of evidence considerations (See paragraph A.6.2.5). Such evidence may be derived from:

—human studies that establish a causal relationship between human exposure to a substance and the development of cancer (known human carcinogen); or

—animal experiments for which there is sufficient evidence to demonstrate animal carcinogenicity (presumed human carcinogen).

In addition, on a case by case basis, scientific judgment may warrant a decision of presumed human carcinogenicity derived from studies showing limited evidence of carcinogenicity in humans together with limited evidence of carcinogenicity in experimental animals.

CATEGORY 2: Suspected human carcinogens.

The classification of a substance in Category 2 is done on the basis of evidence obtained from human and/or animal studies, which is not sufficiently convincing to place the substance in Category 1A or B. This classification is based on strength of evidence together with weight of evidence considerations (See paragraph A.6.2.5). Such evidence may be from either limited evidence of carcinogenicity in human studies or from limited evidence of carcinogenicity in animal studies.

Other considerations: Where the weight of evidence for the carcinogenicity of a substance does not meet the above criteria, any positive study conducted in accordance with established scientific principles, and which reports statistically significant findings regarding the carcinogenic potential of the substance, must be noted on the safety data sheet.
Hazard Communication Standard

A. **Hazard Communication Standard** – The purpose of the Hazard Communication Standard (HCS) is to establish uniform safe chemical requirements for all areas of employment. Under provisions of the law each employee who is exposed to hazardous chemicals must receive safe use information about the chemicals they are exposed to through a comprehensive Hazard Communication Program.

B. **“Right-to-Know”** – Under the law employees have the right-to-know about the chemicals from which they’re exposed. Employers are required to provide this information. Accurate communication is accomplished by labeling chemical containers and providing Material Safety Data Sheets (a.k.a. Safety Data Sheets) that contains important chemical safety use information.

C. **Written Program** – All workplaces, laboratories and classrooms where hazardous chemicals are used must have a written program to ensure the information is provided to the exposed persons. Although OSHA is a workplace regulation, Sinclair intends it be used in laboratories and classrooms for student and visitor safety as well.

D. **A Revised Standard** – On March 26, 2012, the revised HCS was published by OSHA in the *Federal Register* (29 CFR 1910.1200). The HCS is now aligned with the *Globally Harmonized System of Classification and Labeling of Chemicals* (GHS). The OSHA revised HCS is expected to reduce the numbers of accidents, fatalities, injuries, and illnesses associated with exposures to hazardous chemicals. OSHA says that the Hazard Communication Standard in 1983 gave worker users the ‘right-to-know,’ the Globally Harmonized System gives worker users the ‘right to understand.’

GHS Major Changes:
1. Chemical manufacturers and importers are required to determine the hazards of the chemicals they produce or import. Hazard classification under the new standard provides specific criteria to address health and physical hazards as well as classification of chemical mixes.
2. Chemical manufacturers and importers must provide a label that includes a signal word, pictogram, hazard statement, and precautionary statement for each hazard class and category.
3. A new [Material]Safety Data Sheet format requires 16 specific sections, ensuring consistency in presentation of important protection information. Note: GHS calls the MSDS as we know it Safety Data Sheets (SDS). It is not necessary to change the Sinclair MSDS book covers. The term MSDS and SDS at Sinclair may be used interchangeably, but is intended to mean the same 16 section document.
4. To facilitate understanding of the new system, the new standard requires workers be trained by December 1, 2013 on the new label elements and safety data sheet format, in addition to the current training requirements.
E. **What SCC Needs to Do and When:**

1. Continue to update Safety Data Sheets as new ones become available;
2. Provide training on the new label elements; and
3. Update Hazard Communication Program when new hazards are identified.

<table>
<thead>
<tr>
<th>Effective Completion Date</th>
<th>Requirement(s)</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 1, 2013</td>
<td>Train employees on the new label elements and SDS format</td>
<td>Employers</td>
</tr>
<tr>
<td>June 1, 2015</td>
<td>Comply with all modified provisions of the final OSHA rule, except:</td>
<td>Chemical manufacturers,</td>
</tr>
<tr>
<td></td>
<td>Distributors may ship products labeled by manufacturers under the</td>
<td>importers, distributors</td>
</tr>
<tr>
<td></td>
<td>old system until December 1, 2015</td>
<td>and employers</td>
</tr>
<tr>
<td>December 1, 2015</td>
<td>Update alternative workplace labeling and hazard communication program</td>
<td>Employers</td>
</tr>
<tr>
<td></td>
<td>as necessary, and provide additional employee training for newly identified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>physical or health hazards.</td>
<td></td>
</tr>
<tr>
<td>June 1, 2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F. **Departmental Written HCS Program** – Each department where hazardous chemicals are used must develop a written program for how it will comply with the standard. The written program must describe how the department will meet the following requirements and indicate who is responsible for the various aspects of the program:

- Prepare a chemical Inventory list or index.
- Obtain the new GHS 16 section Safety Data Sheets for all chemicals.
- Assemble a Safety Data Sheet book with an organized index.
- Make written MSDS materials available to employees, students and visitors.
- Install GHS hazard warning labels and other forms of warning on chemical containers.
- Provide training.
Chemical Emergency Spill Plan

A. Purpose and Scope

Definition: A chemical emergency is defined as a situation in which a chemical is not properly contained and poses an immediate threat to the health and safety of persons in proximity to the chemical and/or the environment.

This written procedure addresses regulatory requirements under 40 CFR 262.34(d) for a small quantity generator of hazardous waste. This written plan is intended to be used as a reference in the event of an emergency involving a chemical spill or hazardous waste release.

The intention of this plan is to minimize hazards to Sinclair Community College students, faculty, staff and general public from any unplanned sudden release of hazardous materials or hazardous waste into the air, soil, or water as required.

The plan is to be implemented primarily by the Sinclair Police Department, however all college personnel involved in the management of hazardous materials and waste at Sinclair Community College must be familiar with the content of this plan.

At Sinclair Community College there are three types of emergencies that must be considered:

1. Petroleum spills
2. Chemical spills
3. Bio hazard and infectious waste spills

It is very important to respond to emergency spills immediately to prevent or minimize consequences. Spills at Sinclair Community College are classified as Large Spills and Small Spills. Chemical spills are classified based on content and volume.

Large Spill

- Any spill greater than one gallon.
- A formalin or formaldehyde spill greater than one liter.
- Any amount of mercury spill.
- Any amount of hydrofluoric acid.
- Solid oxidizing, corrosive or flammable material greater than one pound.
- A chemical releasing fumes that pose physical hazards such as irritation to the nose, eyes, throat, or skin, or the fumes cause dizziness. (Always refer to the MSDS before cleaning up a spill to avoid these conditions).
- Extreme toxic dusts such as beryllium, cadmium, arsenic, and their compounds, and barium, thallium, and mercury compounds.
The possibility of a large petroleum spill is related to the heating oil or diesel fuel delivered to the various storage tanks maintained by the Facilities Management Department. Due to the proximity to the river and in addition to this document, a Spill Prevention, Control and Countermeasures Plan (SPCC plan) is required. The SPCC plan has been prepared and is kept in the Facilities Management Office (Building 17) in the Storage Tank Manuals, Tank Book # 2, Section 1, A.

The basic components of the SPCC plan are guidelines for spill control, evacuation, notification of proper authorities and general emergency procedures in the event of a chemical incident in that there is potential for a significant release of hazardous materials or waste.

Small Spill
- Incidental spills less than one gallon.
- Less than one liter of formalin or formaldehyde.
- Any amount of Solid material such as salts (e.g., potassium chloride, sodium chloride).

Note: Laboratory departments should be equipped and prepared to clean-up their own small spills.

B. General Operating Procedure

1. When a spill emergency occurs:
 - **Call** Sinclair Police at 2700. The Sinclair Police Dispatcher will immediately contact the Director of Public Safety (**Incident Commander**) and Assistant Director of Facilities Management (**HazMat Coordinator**) or designees in their absence.
 - **Evacuate** room or building, when necessary.

2. Emergency evacuation of personnel in health threatening situations can be accomplished by pulling a building fire alarm station. Anyone who sees and believes an emergency is happening should first **sound the fire alarm** and immediately contact Sinclair Police. The communication of accurate information is extremely important in an emergency situation.

 Avoid traffic going through the spill area. Those who may have come into contact with the spill material should be directed to remove contaminated shoes or clothing. Contaminated shoes and clothing must be considered as hazardous waste or until proven otherwise.

3. For fuel oil emergencies, the HazMat Coordinator will assess the situation by consulting the Spill Prevention, Control, and Countermeasures Plan.

 Primary focus is that spills will be cleaned up immediately and all clean up material drummed and held for proper disposal. The amount of the spill will be compared to the amount considered a "reportable quantity" under state and federal law, and response reporting handled accordingly. Depending on the severity of the emergency, assistance would be requested from the following parties in order of importance:
 - Dayton Fire Department
 - Dayton, Ohio Regional Haz-Mat Response Team
 - State Emergency Services and Disaster Agency
 - National Response Center
4. After the emergency is over, the Incident Commander will restore the facilities to pre-emergency status before resuming operations.

5. If the emergency was of sufficient size to warrant EPA reporting, the HazMat Coordinator will notify the EPA regional administrator that the facility is ready to resume operations. EPA notification is probably not applicable to SCC due to the small spill potential.

6. The HazMat Coordinator will submit a written report to the EPA regional administration within 15 days as required.

7. The Public Information Office will coordinate the release of any/all public information concerning environmental issues to external College parties.

C. **Emergency Telephone Numbers**

The following persons have been made familiar with this emergency contingency plan and with the operations and activities of the hazardous waste storage procedures in order to act as emergency coordinators in the event of an emergency. They are listed in order of the priority in which they should be called.

1. **Emergency Response Call**
 - Sinclair Police 512-2700
 - Incident Commander 512-2700
 - HazMat Coordinator (Asst. Dir. F.M.) 512-5361 256-9095 313-9390
 - Director of Facilities Management 512-4529 667-5999 313-9410

2. **Emergency Spill Advisor**
 - Tencon, Inc. Telephone # (513) 248-0012
 - 40 Wooster Pike
 - Milford, OH 45150

3. **Outside Agency Emergency Numbers**
 - Dayton Fire Department: Call Sinclair Police at 2700, they will use their direct line for Fire, Ambulance, Haz-Mat & Emergencies. Dayton Campus: Do not call 911 from a cell phone.

 The Dayton Regional Hazardous Material Response Team will be notified by the Dayton Fire Department.
To contact the Dayton Regional Coordinator for other than a HazMat response:
Office location: 444 West Third Street, Suite 20-231 - Dayton, Ohio 45402-1460
Telephone #: Office – (937) 512-5103, Cell – (937) 901-5112, Pager – (937) 334-3660

4. Storm drains to the river

A Spill threatening the river, etc.: **If in doubt report the spill. Call OEPA!! 800-282-9378**

D. **Storage Facilities**

Hazardous waste is stored by the generating department. Waste must be stored properly and labeled. Contact the HazMat Coordinator in Facilities Management for packing and waste disposal.

A list of the chemicals stored on campus is recorded in the Chemical Storage book. Copies are kept by Sinclair Police Dispatch, Facilities Management and Safety Coordinator.

E. **Local Assistance**

The HazMat Coordinator has met with a Dayton Fire Department representative to familiarize them with:

1. The location of the oil storage tanks referred to in the SPCC plan.
2. The layout of the institution's hazardous waste storage facilities and properties (Sinclair Community College generates relatively small quantities of hazardous waste and storage is limited to point of generation site).
3. Associated hazards of any hazardous materials or waste being handled
4. Places where facility personnel would normally be working, and
5. Access to storage sites.

Representatives of Sinclair Community College believe the types of injuries or illnesses that could result from fires, explosions, or releases at the facility are the same as those that might occur in teaching laboratories. Because the emergency room staff at nearby hospitals is already trained in responding to such emergencies, no special meeting with the hospital staff is necessary.

For private response to an environmental concern, Tencon, Inc. can be notified for assistance. Tencon is currently involved with the environmental compliance of Sinclair Community College with all federal, state, and local regulations.

If the Dayton Fire Department requires additional assistance from other local and state emergency authorities, they will request such assistance as needed in consultation with Sinclair’s Incident Commander. Because of the relatively small amounts of hazardous materials and waste stored on Sinclair Community College campus, it is expected that state emergency response teams would not be required.
F. Spill Prevention, Control and Countermeasure Plan

The SPCC plan is the written plan for responding to large volume petroleum material spills associated with Sinclair Community College’s fuel oil tanks. SPCC Plan is kept in Facilities Management.

G. Sinclair Police First Responder Training¹

First responder awareness level: First responders at the awareness level are individuals who are likely to witness or discover a hazardous substance release and who have been trained to initiate an emergency response sequence by notifying the proper authorities of the release. First responders shall have sufficient training or have had sufficient experience to objectively demonstrate competency in the following areas:

- An understanding of what hazardous materials are, and risks associated with them in an incident.
- An understanding of the potential outcomes associated with an emergency created when hazardous materials are present.
- The ability to identify the hazardous materials, if possible.
- An understanding of the role of the first responder awareness individual in the employer’s emergency response plan including site security and control.
- The ability to realize the need for additional resources, and to make appropriate notifications to the communication center.

H. Evacuation

The building fire alarm should be activated. Persons in the immediate vicinity of the incident should immediately be evacuated and all operations cease. Individual departments should develop procedures to account for all personnel. Sinclair Police will notify the appropriate external emergency agencies.

I. Spill Control

Trained department personnel should clean up small quantity chemical spills.

Large spills of ignitable liquids or solids, highly toxic materials, and materials generating dangerous gases should be left to the Dayton Fire Department, which has been designated as the primary emergency authority. The Incident Commander and/or HazMat Coordinator must be available to provide information to the fire department.

J. Advisement

The HazMat Coordinator should be present to advise assisting agencies on the character, amounts, source, and extent of hazardous materials to the extent known to local authorities and the National Response Center in the event of life-threatening situations outside the facility, as required.
K. **Clean Up**

If trained department personnel, using standard spill/cleanup apparatus and procedures, cannot handle the chemical cleanup safely, the Dayton Fire Department should be notified. All reporting must follow EPA regulatory requirements.

L. **Basic Clean-up Procedures for a Hazardous Materials Spill**

Material Safety Data Sheets (MSDSs) contain special spill clean-up information and should be consulted in the event of a spill. Table 1 outlines the suggested response to a small chemical spill event:
<table>
<thead>
<tr>
<th>CONTAINER LABEL</th>
<th>POSSIBLE CONTENTS</th>
<th>PHYSICAL AND CHEMICAL PROPERTIES</th>
<th>MATERIAL HAZARDS</th>
<th>SPILL RESPONSE</th>
<th>PERSONAL PROTECTIVE EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Acids</td>
<td>Nitric Acid, Hydrochloric Acid, Acetic Acid, Orthophosphoric Acid</td>
<td>Miscible in Water Pungent Odor</td>
<td>Corrosive</td>
<td>Apply Acid Neutralizer (Spill-X-A) to area of spill. Wait at least 20 minutes for neutralization. Collect debris with broom and dustpan into plastic bucket. Wet wipe remaining area with water and collect wipes into bucket. Secure lid and label. Do not use cleaning solutions.</td>
<td>Gloves: Disposable Nitrile Foot: Closed Heavy Shoes or Booties Eye: Goggles or Safety Glasses Body: Disposable Lab Coat or Apron</td>
</tr>
<tr>
<td>Caustic Liquids</td>
<td>Ferric Chloride Solution, Ammonium Hydroxide, Sodium Hydroxide</td>
<td>Miscible in Water Pungent Odor</td>
<td>Corrosive</td>
<td>Apply Caustic Neutralizer (Spill-X-C) to area of spill. Wait at least 20 minutes for neutralization. Collect debris with broom and dustpan into plastic bucket. Wet wipe remaining area with water and collect wipes into bucket. Secure lid and label. Do not use cleaning solutions.</td>
<td>Gloves: Disposable Nitrile Foot: Closed Heavy Shoes or Booties Eye: Goggles or Safety Glasses Body: Disposable Lab Coat or Apron</td>
</tr>
<tr>
<td>Organic Waste Semi-Solid</td>
<td>Methylene Chloride in Silica gel</td>
<td>Chloroform-like odor; Combustible, Flash above 99 and below 200 F</td>
<td>Toxic Combustible</td>
<td>Throw universal absorbent media on top of spill [pillow, pad, boom, etc.] or loose absorbent granules [cat litter]. Collect material into a bucket without using tools that may produce a spark. Secure lid and label.</td>
<td>Gloves: Disposable Nitrile Foot: Closed Heavy Shoes or Booties Eye: Goggles or Safety Glasses Body: Disposable Lab Coat or Apron</td>
</tr>
<tr>
<td>Organic Waste Liquids</td>
<td>Acetone, Ethanol, Dichloromethane, Propanol, Hexane, Ether, Tetrahydrofuran, methylene chloride</td>
<td>Flash Point ±0 F, Miscible in Water,</td>
<td>Flammable Poison</td>
<td>Throw universal absorbent media on top of spill [pillow, pad, boom, etc.] or loose absorbent granules [cat litter]. Collect material into a bucket without using tools that may produce a spark. Secure lid and label.</td>
<td>Gloves: Disposable Nitrile Foot: Closed Heavy Shoes or Booties Eye: Goggles or Safety Glasses Body: Disposable Lab Coat or Apron</td>
</tr>
<tr>
<td>CONTAINER LABEL</td>
<td>POSSIBLE CONTENTS</td>
<td>PHYSICAL AND CHEMICAL PROPERTIES</td>
<td>MATERIAL HAZARDS</td>
<td>SPILL RESPONSE</td>
<td>PERSONAL PROTECTIVE EQUIPMENT</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Silica Gel</td>
<td>Silica, Sodium Sulfate, Cadmium, Barium, Zinc, Copper & Nickel Compounds</td>
<td>Non-combustible solid; Odorless; Specific Gravity ≥ 2</td>
<td>Toxic</td>
<td>Collect material into a bucket. Secure lid and label.</td>
<td>Gloves: Disposable Nitrile. Foot: Closed Heavy Shoes or Booties. Eye: Goggle or Safety Glasses. Body: Disposable Lab Coat or Apron</td>
</tr>
<tr>
<td>Unused Oil Based Paints</td>
<td>Petroleum-based Polyurethane-based</td>
<td>Combustible, Flash above 99 and below 200 Fahrenheit</td>
<td>Flammable Liquid Toxic Corrosive</td>
<td>Throw universal absorbent media on top of spill [pillow, pad, boom, etc.] or loose absorbent granules [cat litter]. Collect material into a bucket without tools that may produce a spark. Secure lid and label.</td>
<td>Gloves: Disposable Nitrile. Foot: Closed Heavy Shoes or Booties. Eye: Goggle or Safety Glasses. Body: Disposable Lab Coat or Apron</td>
</tr>
<tr>
<td>Paint Solvents</td>
<td>Mineral Spirits, Stoddard Solvent, 1,2,4 Trimethylbenzene</td>
<td>Specific Gravity ~ 0.8, Flash Point 102-112 Fahrenheit</td>
<td>Flammable</td>
<td>Throw universal absorbent media on top of spill [pillow, pad, boom, etc.] or loose absorbent granules [cat litter]. Collect material into a bucket without tools that may produce a spark. Secure lid and label.</td>
<td>Gloves: Disposable Nitrile. Foot: Closed Heavy Shoes or Booties. Eye: Goggle or Safety Glasses. Body: Disposable Lab Coat or Apron</td>
</tr>
<tr>
<td>Preserved Specimen Waste</td>
<td>Formaldehyde, Formalin, Methyl Alcohol</td>
<td>Pungent suffocating odor. Miscible in water.</td>
<td>Combustible Liquid Flash Point 185 Fahrenheit.</td>
<td>Throw universal absorbent media on top of spill [pillow, pad, boom, etc.] or loose absorbent granules [cat litter]. Collect material into a bucket without tools that may produce a spark. Secure lid and label.</td>
<td>Gloves: Disposable Nitrile. Foot: Closed Heavy Shoes or Booties. Eye: Goggle or Safety Glasses. Body: Disposable Lab Coat or Apron</td>
</tr>
<tr>
<td>Unknown liquid, Solid or Gas</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>CALL SINCLAIR POLICE at X2700</td>
<td>N/A</td>
</tr>
</tbody>
</table>

M. Broken Mercury Thermometer or Small Mercury Spill

1. Have everyone leave the area. Evacuate.
2. Do not let anyone walk through the mercury on their way out.
3. Should someone walk through the mercury their shoes will be contaminated and must be removed immediately near the spill and disposed or contained as hazardous waste.
4. Mercury can be easily cleaned up from wood, tile and smooth concrete surfaces.
5. If a spill occurs on carpet or other absorbent surface, these contaminated items must be removed and disposed of as hazardous waste.
6. Clean-up instructions:
 - Put on disposable gloves.
 - Pick up broken glass with care. Place broken glass on a paper towel. Fold the paper towel and place in a sealable plastic bag. Seal and label bag contents.
• Locate visible mercury beads. Use a squeegee or cardboard to gather mercury beads. Use slow sweeping motions to keep mercury from becoming uncontrollable. Take a flashlight, hold it at a low angle (close to the floor) and look for additional glistening beads.
• Use an eyedropper to collect the mercury beads. Slowly and carefully squeeze mercury onto a damp paper towel. Place paper towel in a sealable plastic bag. Seal and label the bag.
• For final cleanup of the spill area, use a special mercury clean-up kit sponge. A sponge with a layer of granulated zinc on one side. The sponge is placed on the spilled mercury (zinc side down) and the mercury amalgamates with the zinc. Because the mercury is amalgamated, the risk of exposure due to airborne mercury is greatly reduced. The sponge is then disposed of as mercury contaminated lab waste. These kits can be ordered through Fisher Scientific Lab Safety Supply catalog # NC9660093.
• Place all materials used during the clean-up procedure, including gloves, mercury beads, and sponges in a sealable plastic bag. Seal bag and label. Dispose of in accordance with local, state and federal laws.

N. **Large Mercury Spill (More than two tablespoons or one pound)**

EPA indicates, “any time one pound or more of mercury is released into the environment, it is mandatory to call the National Response Center (NRC).” The hotline operates 24 hours a day, 7 days a week. Call (800) 424-8802.

O. **EPA Recommendations for Clean-up of a Broken Fluorescent Light Bulb:**

1. **Clean-up Steps for Hard Surfaces:**
 • Evacuate the room, and don’t let anyone walk through the breakage on their way out.
 • Leave the room for 15 minutes or more. Ventilate if possible.
 • Carefully scoop up glass pieces and powder using stiff paper or cardboard and place them in a sealed plastic bag.
 • Use sticky tape, such as duct tape, to pick up any remaining small glass fragments and powder.
 • Wipe the area clean with damp paper towels. Place used towels in a plastic bag and seal.
 • Dispose of hazardous breakage through the fluorescent bulb waste stream.
 • Do not use a vacuum or broom to clean up a broken bulb on a hard surface.

2. **Clean-up Steps for Carpet Type Floor Covering**
 • Evacuate the room, and don’t let anyone walk through the breakage on their way out.
 • Leave the room for 15 minutes or more. Ventilate if possible.
 • Carefully pick up glass fragments and place them in a sealed plastic bag.
 • Use sticky tape, such as duct tape, to pick up any remaining small glass fragments and powder.
 • If vacuuming is needed after all visible materials are removed, vacuum the area where the bulb was broken. Remove the vacuum bag, and put the bag and vacuum debris in a sealed plastic bag.
 • Dispose of hazardous breakage through the fluorescent bulb waste stream.
P. Spill Kits

1. Locations:
 - Receiving Dock 6030
 - Receiving Dock 13108C
 - Truck Bay 17129

2. Contents:
 - Degreaser – 1
 - Safety Glasses – 2 Pr.
 - Dry Sweep – 2 Units
 - Dust Pan – 1
 - Rubber Gloves – 2 Pr.
 - Disposable Protective Boots – 1 Pr.
 - Caution Tape – 1 Roll
 - Clipboard and Pen – 1 Each
 - Absorbent Socks – 1 Box
 - Absorbent Pads – 6
 - Hazardous Materials Disposable Bags – 1 Roll
 - Liquid Spill Sample Bottles – 2
 - Protective Over Suits – 2
 - Dust Mask – 3
 - Paper Rags – 1 Pack
 - Iso Tone First Aid Treatment – 1 Bottle
 - Aloe Vera Skin Cream – 1 Bottle

3. Spill Kits inventories are serviced twice a year by a maintenance work order. The Materials Expediter in Service Control maintains an inventory of Spill Kit items and checks that the Spill Kit inventories are filled to contents list above. Users of Spill Kit items must notify the Service Control Center for replacement items immediately after use.

4. Mercury small spill kits are available in the Chemistry storage room 12394 (see Lab Tech) and Facilities Management room 17117 (see Assistant Director).
Chemical Inventory Management

A. Purchases

Purchase only materials needed. Avoid overstocking by purchasing smaller quantities more often. Inventories should be kept to minimum quantities.

B. Donations

All donations must be approved prior to acceptance and delivery. See the College’s Donation Policy.

C. Inventory Rotation

Inventory rotation procedures must follow first in, first out, to reduce the accumulation of older products. Older products of seldom or never used chemicals must be eliminated. Intended use of a product is the best way to eliminate unwanted inventories.

D. Receiving and Inspection

The responsibility for receiving and verification of proper quantities is the responsibility of the ordering department and not that of Shipping and Receiving. Shipping cartons will be delivered to the ordering department unopened. The ordering department is responsible for receipt.

Shipments must be inspected for external damage and leaking containers prior to acceptance. Damaged goods should be refused from the carrier, but leaking containers on Sinclair property may pose a public safety emergency. Leaking containers must be reported to Sinclair Police immediately for assessment.

Bulk deliveries must be coordinated and received by the ordering department. Transfer from the transporter to college containers must be done by transporter personnel. The college ordering department will supervise unloading. Spills must be reported immediately to Sinclair Police.

E. Proper Storage

Proper storage of hazardous materials is the responsibility of the ordering department.

Materials should be stored in compatible and appropriate containers with approved ventilation, fire protection and caution or warning signage.

Hazardous material storage:
1. Security – Access to chemical storage areas must be restricted to those personnel assigned and trained for occupancy.
2. Environment – Adequate ventilation must be provided. Only storage cabinets and areas designed and approved for chemicals storage shall be used.
3. Compatibility – Chemical compatibility must be established and maintained, e.g., acids away from bases, flammables separate from corrosives, and reactives away from everything else.
4. **Flammables** – Flammables must be kept in closed metal containers or safety cans that are equipped with grounding. These containers must be stored in fire resistant and vented cabinets or storage room. All storage must be approved for use. No container over 5 gallons can be stored in lab areas.

F. On-Campus Transportation and Packaging

The purpose of having general guidelines for on-campus transportation of hazardous or infectious materials is to control employee "at-risk" exposure, eliminate the possibility of environmental contamination, and avoid the activation of evacuation or spill response. The latter often requires bringing in outside services for clean up which result in significant cost to the college.

To avoid chemical spills on College property, users are held responsible for safe packing and transportation.

All hazardous materials must be safely double packaged and labeled prior to transportation across Campus, e.g., when transporting a mercury containing instrument within a building, place the portion of the instrument or the entire instrument in a closed plastic bag or container. In the event that the instrument is dropped or broken, the bag will serve to contain the mercury and eliminate the actual spill. In this situation, the broken instrument, still in the "transport bag", should be taken to a secure area designated by Facilities Management for proper disposal.

When materials are transported for disposal, they are often handled in multiple small containers. Small container disposal is handled as a "lab pack" for secure packing of multiple small containers into a large drum with appropriate absorbent and cushioning material surrounding them.
Figure 1 below depicts the construction of a Lab Pack, which is the accepted method for shipping multiple items.

Figure 1: A Depiction of a Lab Pack
Hazard Classification

Chemical Classification is the starting point for Hazard Communication. It involves the identification of the hazards of a chemical or mixture by assigning a category of hazard/danger using defined criteria.

A. **Health Hazards**

1. Acute toxicity
 a. Acute toxicity refers to those adverse effects occurring following oral or dermal administration of a single dose of a substance, or multiple doses given within 24 hours, or an inhalation exposure of 4 hours.

2. Skin corrosion or irritation
 a. Skin corrosion is the product of irreversible damage to the skin; namely, visible necrosis (death of tissue) through the epidermis and into the dermis, following the application of a test substance for up to 4 hours.
 b. Skin irritation means the production of reversible damage to the skin following the application of a test substance for up to 4 hours.

3. Serious eye damage or eye irritation
 a. Serious eye damage is the production of tissue damage in the eye, or serious physical decay of vision, following application of a test substance to the anterior surface of the eye, which is not reversible within 21 days of application.
 b. Eye irritation is the product of changes in the eye following the application of test substance to the anterior surface of the eye, which are fully reversible within 21 days of application.

4. Respiratory or skin sensitization
 a. Respiratory sensitizer means a substance that will lead to hypersensitivity of the airways following inhalation of the chemical.
 b. Skin sensitizer means a substance that will induce an allergic response following skin contact.

5. Germ cell mutagenicity
 a. A mutation is defined as a permanent change in the amount or structure of the genetic material in a cell or an increase occurrence of mutations in populations of cells and/or organisms.

6. Carcinogenicity
 a. Carcinogen means a chemical substance or mixture of chemical substances which induce cancer or increase its incidence. Substances and mixtures in this class are assigned to one of two hazard categories. Category 1 has two subcategories:
 • Subcategory 1A Known to have carcinogenic potential for humans; and
 • Subcategory 1B Presumed to have carcinogenic potential for humans.
 b. Category 2 is Suspected human carcinogens.

7. Reproductive toxicity
a. Reproductive toxicity includes adverse effects on sexual function and fertility in adult males and females, as well as adverse affects on development of the offspring.

8. Specific target organ toxicity
 a. Detrimental health effects produced by a single exposure.
 b. Detrimental health effects produced by repeated exposure.

9. Aspiration hazard
 a. Aspiration means the entry of a liquid or solid chemical directly through the oral or nasal cavity (or indirectly from vomiting) into the trachea and lower respiratory system.
 b. Aspiration toxicity includes severe effects such as chemical pneumonia, varying degrees of pulmonary injury or death following aspiration.

B. Physical Hazards

1. Explosives
 a. An explosive is a solid or liquid substance which is in itself capable by chemical reaction of producing gas at such a temperature and pressure and at such a speed as to cause damage to the surroundings.
 b. Pyrotechnic substances are included even when they do not evolve gases.
 c. A pyrotechnic substance is designed to produce an effect by heat, light, sound, gas or smoke or a combination of these as the result of non-detonative self-sustaining exothermic chemical reactions.

2. Flammable aerosol
 a. Aerosols are any gas compressed, liquefied or dissolved under pressure within a non-refillable container made of metal, glass or plastic fitted with a release device allowing the contents to be ejected as particles in suspension in a gas, or as a foam, paste, powder, liquid or gas.
 b. Aerosols shall be considered for classification as flammable if they contain any component which is classified as a flammable liquid, a flammable gas, or a flammable solid.

3. Oxidizing gases
 a. Oxidizing gas means any gas which may (generally by providing oxygen) cause or contribute to the combustion of other material more than air does.

4. Gases under pressure
 a. Gasses under pressure are compressed gasses, liquefied gasses, dissolved gases and refrigerated liquefied gases. Sudden release can result in serious freezing damage to people, property or the environment independent of other hazards the gasses may pose.

5. Flammable liquids
 a. Flammable liquid means a liquid having a flash point of not more than 93ºC (199.4 degrees Fahrenheit).
6. Flammable solids
 a. Flammable solid are solids that are readily combustible to fire through friction.
 b. Readily combustible solids are powdered, granular, or pasty substances which are
dangerous if they can be easily ignited by brief contact with an ignition source, such as a
burning match, and if the flame spreads rapidly.

7. Self-reactive chemicals
 a. Self-reactive substances are thermally unstable liquids or solids liable to undergo a strongly
exothermic decomposition even without participation of oxygen (air). This definition
excludes materials classified under the GHS as explosives, organic peroxides, oxidizing
liquids or oxidizing solids.
 b. A self-reactive chemical is regarded as possessing explosive properties when in laboratory
testing the formulation is liable to detonate, to deflagrate rapidly or to show a violent effect
when heated under confinement.

8. Pyrophoric liquids
 a. Pyrophoric liquid means a liquid which, even in small quantities, is liable to ignite within five
minutes after coming into contact with air.

9. Pyrophoric solids
 a. Pyrophoric liquid means a solid which, even in small quantities, is liable to ignite within five
minutes after coming into contact with air.

10. Self-heating chemicals
 a. A self heating substance is a solid or liquid chemical, other than a pyrophoric liquid or solid,
which by reaction with air and without energy supply, is liable to self-heat. This endpoint
differs from a pyrophoric substance in that it will ignite only when in large amounts
(kilograms) and after long periods of time (hours or days).
 b. Self-heating of a substance or mixture is a process where gradual reaction of that substance
or mixture with oxygen (in air) generates heat. If the rate of heat production exceeds the
rate of heat loss, then the temperature of the substance or mixture will raise which, after an
induction of time, may lead to self-ignition and combustion.

11. Substances which on contact with water, emit flammable gas
 a. Substances that are solids or liquids which, by reaction with water, are liable to become
spontaneously flammable or give off flammable gasses in dangerous quantities.

12. Oxidizing liquids
 a. Oxidizing liquid is a liquid while within itself is not necessarily combustible, may, generally
by yielding oxygen cause or contribute to the combustion of other material.

13. Oxidizing solids
 a. Oxidizing solid is a solid while within itself is not necessarily combustible, may, generally by
yielding oxygen cause or contribute to the combustion of other materials
14. Organic peroxides
 a. Organic peroxides are thermally unstable chemicals, which may undergo exothermic self-accelerating decomposition.
 b. Such substances and mixtures may:
 - Be liable to explosive decomposition;
 - Burn rapidly;
 - Be sensitive to impact or friction; and
 - React dangerously with other substances.

15. Corrosive to metals
 a. A substance or mixture that by chemical action in contact with metal will materially damage or destroy the metal.

C. Environmental Hazards

1. Environmental data may appear on the Safety Data Sheet or on the container label, although OSHA is not including any environmental data in the Hazard Communication Standard.
 a. Substances that are hazardous to the environment are categorized as:
 - Acute aquatic toxicity;
 - Chronic aquatic toxicity.
 b. The Environmental Protection Agency governs environmental issues.

D. OSHA Defined Hazards

1. Pyrophoric gas
 a. Pyrophoric gases must be addressed both on container labels and Safety Data Sheets. OSHA has provided label elements for pyrophoric gases which include the signal word “danger” and the hazard statement “catches fire spontaneously if exposed to air.”

2. Simple asphyxiants
 a. Simple asphyxiants must be labeled where appropriate, and be addressed on the Safety Data Sheet. OSHA has provided label elements for simple asphyxiants which include the signal word “warning” and the hazard statement “may displace oxygen and cause rapid suffocation.”

3. Combustible dust
 a. Combustible dust is defined as a solid material composed of distinct particles or pieces, regardless of size, shape, or chemical composition, which presents a fire or deflagration hazard when suspended in air or some other oxidizing medium over a range of concentrations.

E. Hazards Not Otherwise Classified (HNOC)

1. “Hazard not otherwise classified (HNCO)” means an adverse physical or health effect identified through evaluation of scientific evidence during the classification process that does not meet the specified criteria for the physical and health hazards classes addressed in this section.
2. This definition requires classifiers who find “scientific evidence” that a chemical can cause death, illness, or injury to workers in a way not currently covered by the GHS classification criteria to disclose that fact on the Safety Data Sheet.
Written Hazard Communication Program

A. Basic Requirements of a Written Program:

1. Create a list of the hazardous materials in each lab or each work area.
2. Identify the person or job description responsible for compiling and keeping the chemical inventory list up-to-date.
3. Document who has responsible for:
 a. Obtaining the Safety Data Sheets (SDS) [formerly, Material Safety Data Sheets (MSDS)];
 b. Updating SDSs when information changes;
 c. Making sure containers are properly labeled; and
 d. Conducting HazCom training.
5. Document which employees must receive Hazard Communication Training and method of certifying who was trained.
6. Document how to provide employee access to Safety Data Sheets.

B. Expanded Requirements

1. Chemical Inventory List:
 a. The list must be kept by an “identity” of the chemicals which is the “product identifier” that is referenced on the label and Safety Data Sheet. The inventory list can be common names or product names rather than individual chemical ingredients of each product by specific chemical identity or chemical name.
 b. Once a complete list has been made, the next step is to obtain a Safety Data Sheet.
2. Safety Data Sheets:
 a. Designate the identity of the person responsible for obtaining/maintaining the Safety Data Sheets;
 b. Identify where the Safety Data Sheets are to be kept to be accessible to the chemical users;
 c. The procedures to follow when a SDS is missing;
 d. The procedure to be followed when the SDS is not received with the shipment;
3. Labels and other forms of warning:
 a. Designate the person responsible for ensuring the labeling of chemical containers;
 b. Procedure to maintain labeling of containers;
 c. Description of posters and signage, if appropriate.
4. Training:
 a. Designate the person responsible for training;
 b. Criteria used to determine which employees will receive training;
 c. Format of the training program (audiovisual, classroom, etc)
 d. Procedure to train new employees at time of work assignment
 e. Method of training documentation
5. Employee exposure and medical records:
 A. Retain some form of record concerning the exposure and identity of a substance or agent, where it was used, and when it was used must be retained for thirty (30) years (who, what, where and when).
 B. Send all employee training and exposure records to Human Resources. An exposure incident requires an accident report.
C. Sample Hazardous Communication Program Plan

To ensure that information about the dangers of all hazardous chemicals used by (Name of College Department) are known by all affected students and employees, the following sample Hazardous Materials Plan has been established.

All Departments of Sinclair Community College who purchase, store and use chemicals and chemical products will participate in the Hazard Communication Plan. This written departmental program is made available in (location) for review by any interested party.

1. Container Labeling:
The (person or position description) will verify that all containers in the laboratory or workplace are clearly labeled according to OSHA’s Hazard Communication Standard, either with the information specified under paragraphs (f)(1)(i) through (v) of 29 CFR 1910.1200 or with the product identifier and words, pictures, symbols, or combination thereof, which provides at least general information regarding hazards of the chemical. Existing labels will not be removed or defaced unless the container is immediately re-marked with the required information.

The (person or position description) will ensure that all secondary containers are labeled with either a duplicate copy of the original manufacturer’s label or with labels that meet 29 CFR 1910.1200(g)(6).

We are using the following in-house labeling system: (provide a description of any in-house system used, including the numbers or graphics utilized to convey hazard information.)

The (person or position description) will review the department’s labeling procedures every (provide a time period) and will update labels as required.

2. Material Safety Data Sheets (Safety Data Sheets):
(Person or position description) is responsible for establishing and monitoring the (department) Safety Data Sheet Program. He/she will make sure procedures are developed and maintained to obtain the necessary Safety Data Sheets and will review incoming Safety Data Sheets for new and significant health and safety information.

He/she will see that any new information is passed on to affected students or employees. The following procedure will be used when a Safety Data Sheet is not received at the initial shipment:

(Enter procedure to be followed here and attach sample correspondence to the plan.)

Copies of Safety Data Sheets for all hazardous chemicals that students and employees are exposed or potentially exposed will be kept in (location description). Safety Data Sheets will be readily available to students and employees during all college open hours. If a Safety Data Sheet is not available, contact (person or position).

Copies of Safety Data Sheets will be readily available to students and employees in each lab or work area.
When new or revised Safety Data Sheets are received, the following procedure will be followed to install them in the MSDS book:
If a Safety Data Sheet is not provided with a shipment labeled as hazardous or has been received prior to the shipment, the following procedure shall be used to ensure the chemical is not used and that an SDS id obtained as soon as possible:

describe procedure.

3. Student/Employee Training and Information:
(Person or position description) is responsible for student/employee training and information. He/she will ensure that all program elements specified here are carried out.

All students and or employees must be made familiar with new standardized labels and safety data sheets. This will be accomplished by:

describe procedure.

Every exposed employee shall be trained at the time of their initial assignment, and whenever a new chemical hazard the employee has not been trained on is introduced into his/her work area. This will be accomplished by:

describe procedure.

Prior to starting work, each new employee will attend a health and safety orientation that includes the following information and training:

- The hazardous chemicals present in the workplace.
- The physical and health risks of the hazardous chemicals.
- Symptoms of over exposure
- How to determine the presence or release of hazardous chemicals through use of control procedures, work practices, and personal protective equipment.
- Steps the department has taken to reduce or prevent exposure to hazardous chemicals.
- Procedures to follow if employees are overexposed to hazardous chemicals.
- How to read labels received on shipped containers and the workplace labeling system.
- An explanation of the Safety Data Sheet, including the order of information and how employees can obtain and use the appropriate hazard information.
- Location of the Safety Data Sheet file and written hazard communication program.

4. List of Hazardous Chemicals:
The following is a list of all hazardous chemicals known to be present in the (department). This list includes the product identifier, the chemical manufacturer, building and room number, dates of use, and the quantity used.
When new chemicals are received, this list is updated within 30 days of introduction into the lab or workplace. To ensure that the chemical is added in a timely manner, the following procedures shall be followed:

(define procedure)

The hazardous chemical inventory was compiled and is maintained by:

(Name or position description)

Sample list to be done in alphabetical order:

<table>
<thead>
<tr>
<th>Identifier or Chemical Name</th>
<th>Manufacturer</th>
<th>Storage Room #</th>
<th>Quantity</th>
<th>SDS Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Place chemical list in the front of the Safety Data Sheet Book. Use as index.
D. **Sample Letter Requesting an SDS**

(date)
Sinclair Community College
444 West Third Street
Dayton, OH 45402

Dear Sir or Madame:

The Occupational Safety and Health Administration (OSHA) Hazard Communication Standard (29 CFR 1910.1200) requires employers be provided Safety Data Sheets (SDSs) for all hazardous substances used in their facility, and to make these SDSs available to employees potentially exposed to these hazardous substances. We, therefore, request a copy of the SDS for your product listed as Stock Number ________.

We did not receive an SDS with the initial shipment of ______________ we obtained from you on (date). We also request any additional information, supplemental SDSs, or any other relevant data that your company or supplier has concerning the safety and health use of this product.

Please consider this letter as a standing request to your company for information concerning the safety and health aspects of using this product that may become known in the future. The SDS and any other relevant information should be sent to us within 10, 20, 30 days (select appropriate time). Delays in receiving the SDS information may prevent use of your product.

Please send the requested information to (your name), (position), (address).

Please be advised that if we do not receive the SDS on the above chemical by (date), we may have to notify OSHA of our inability to obtain this information. It is our intent to comply with all provisions of the Hazard Communication Standard and the SDSs are integral to this effort. Your cooperation is greatly appreciated. Thank you for your timely response to this request.

If you have any questions concerning this matter, please contact (name) at (phone number).

Sincerely,

(name)
(position)
Sinclair Community College
Information and Training

A. **Purpose:**

1. Comprehension and understanding are the product of a properly conducted training program and will decrease the possibility of chemical caused illnesses and injuries.

2. The primary source of safety information comes from Container Labels and Safety Data Sheets.

3. Do not expect every person to be able to recite all information about each chemical in the workplace or laboratory. It is important they understand how to find the necessary information.

4. The most important aspects of training are to ensure that:
 a. Employees and students are aware when they are potentially exposed to hazardous substances;
 b. They can read and use Container Labels and Safety Data Sheets; and
 c. Are following the appropriate protective measures established by the department.

B. **Effective Training:**

1. Effective means that the person must carry the knowledge from the training into their daily work. For example, if asked, they should know where hazardous chemicals are present in the area and know how to protect themselves from exposure.
 a. Training must include the details of the department’s Hazard Communication Program;
 b. How to read container labeling; and
 c. How to read and understand the Safety Data Sheet.

C. **Who Must Be Trained?**

1. All employees and students who are exposed to hazardous chemicals in their work area.

D. **What the Training Must Include:**

1. The most important aspect of training is to ensure that persons are aware when they are or could be exposed to hazardous chemicals and how to prevent or avoid exposure.

2. Chemical-specific information must always be available through Labels and Safety Data Sheets.

3. Potentially exposed persons should understand:
 a. Methods and observations that may be used to detect the presence or release of a hazardous chemical;
 b. The physical, health, simple asphyxiation, combustible potential, pyrophoric gas hazards of chemicals in the work area.
 c. The measures persons can take to protect themselves from hazards through appropriate work practices, emergency procedures, and Personal Protective Equipment (PPE) use.
 d. The details of the hazard communication program developed by the department, including:
i. An explanation of the labels on containers;
ii. The workplace or laboratory self labeling system;
iii. How to read and understand the Safety Data Sheet, including the order of information;
iv. Where and how to find the Safety Data Sheets in the workplace or laboratory;
v. Where to find a copy of the written HazCom Program, and
vi. Who to go to with HazCom questions.

E. Training Resources

1. Methods of training used may include videos, interactive computer programs, classroom instruction, or a combination of training resources.

2. Use handouts, diagrams, draw pictures on a chalk board – whatever is necessary to communicate the message.

3. Use hands-on activities, exercises, demonstrations, role-play, table-top displays, to give the training variety and provide hands-on experience.

4. Contact the Safety Coordinator for assistance, if needed.
Labels and Forms of Warning

A. Container Labels:

The following checklist will help to ensure compliance with the rule.

1. Make sure each container is properly labeled when:
 a. Entering facility.
 b. Leaving the facility.
 c. Remains in the facility.

2. If alternate methods are used in lieu of affixing labels to individual stationary large containers (e.g., Storage tanks):
 a. Identify the containers to which the alternative method applies.
 c. Ensure that written materials are readily accessible to affected workers.

B. Better Communication:

OSHA indicates that the 1994 HCS resulted in inadequate label communication. OSHA believes the adoption of GHS will help resolve that.

The final rule requires that labels on shipped containers contain much more information than required by the earlier standard.

If materials are transferred into other containers, the employer must ensure that these containers are also labeled.

C. Things to Look for on the Container Label:

1. *Pictogram* – As of June 1, 2015, the Hazard Communication Standard (HCS) will require pictograms on labels to alert users of the chemical hazards to which they may be exposed. Each pictogram consists of a symbol on a white background within a red border and represents a distinct hazard(s). The pictogram on the label is determined by the chemical classification.
2. **Signal Word** – The signal word indicates the relative degree of severity of a hazard class and category. Two signal words are used:
 a. “Danger” for the more severe hazards, and
 b. “Warning” for the less severe hazards.

3. **Hazard Statement** – A statement assigned to a hazard class and category that describes the nature of the hazards of a chemical, including, the degree of hazard.

4. **Product Identifier** – A product identifier must be included on the label and should match the product identifier on the Safety Data Sheet. The chemical identity can be the name as determined by IUPAC, ISO, CAS or the technical name.

5. **Precautionary Statement** – The precautionary statement is a phrase that describes recommended measures that should be taken to minimize or prevent adverse effects resulting from exposure to a hazardous chemical or improper storage or handling.

6. **Supplier Information** - Chemical manufacturer, importer, or other responsible party.
D. Sample Label:

Signal Word

Product Identifier

Hazard Pictogram

Fuel Mixture of different substances

Danger

Hazard Statements:
- H225 Highly flammable liquid and vapor
- H304 May be fatal if swallowed and enters airways
- H315 Causes skin irritation
- H336 May cause drowsiness or dizziness
- H411 Toxic to aquatic life with long lasting effects

Precautionary Statements:
- P210 Keep away from heat/sparks/open flames/hot surfaces – No smoking
- P233 Keep container tightly closed
- P273 Avoid release to the environment
- P280 Wear protective gloves/protective clothing/eye protection/face protection
- P301+P310 IF SWALLOWED: Immediately call a poison center or doctor/physician

Sam Sample Ltd. Sample Street 1, 12345 Anytown
Tel: +49(0)123-1234

Contents: 5 liters

Nominal Quantity

Supplier Identification

Hazard Statement

Precautionary Statement

P-statement
Safety Data Sheets

A. Definition:

OSHA defines a Safety Data Sheet (SDS) [formerly MSDS] as written or printed material concerning a hazardous chemical that is prepared in accordance with paragraph (g) of 1910.1200 (see Section 15 of this manual).

The SDS includes information such as the properties of each chemical; the physical, health, and environmental hazards; protective measures; and safety precautions for handling, storing, and transporting the chemical.

The SDS must be in English, although an employer may maintain copies in other languages as well.

B. Requirements:

OSHA publishes GHS on March 26, 2012: To be consistent with the Globally Harmonized System (GHS), an SDS must include all of the 16-section headings in specified sequence, and each section must contain specified information. The 16 section format is consistent with that found in ANSI Z400.1/Z129.1-2010 Hazard Evaluation and Safety Data Sheet and Precautionary Labeling Preparation.

Chemical manufacturers, distributors, or importers must supply a Safety Data Sheet (SDS) for each hazardous chemical to downstream users of the chemical. The SDS must be provided with the shipped containers or sent to the distributor or employer prior to or at the time of the initial shipment, and with the first shipment after a Safety Data Sheet is updated. If the Safety Data Sheet is not provided with the initial shipment the user must contact the manufacturer or supplier to obtain one as soon as possible.

C. Safety Data Sheets for the Globally Harmonized System (GHS):

Section 1. – Identification of the substance or mixture and supplier

This section identifies the chemical on the SDS as well as the recommended uses. It also provides the essential contact of the supplier. The required information consists of:

- Product identifier used on the label;
- Other means of identification;
- The recommended use of the chemical and restrictions on use;
- The name, address, and telephone number of the chemical manufacturer, importer, or other responsible party; and
- An emergency phone number.
Section 2. – Hazard identification

This section identifies the hazards of the chemical presented on the SDS and the appropriate warning information associated with those hazards. The required information consists of:

- GHS classification of the chemical in accordance with paragraph (d) of §1910.1200.
- Signal word.
- Pictograms (the pictograms or hazard symbols may be presented a graphical reproductions of the symbols in black and white or be a description of the name of the symbol, e.g., skull and crossbones, flame, etc.).
- Hazard statement(s).
- Precautionary statement(s)
- For a mixture that contains an ingredient or ingredients with unknown toxicity, a statement describing how much (percentage) of the mixture consists of ingredient(s) with unknown acute toxicity. This is a total percentage of the mixture and not tied to the individual ingredient(s).

Section 3. – Composition/information on ingredients

This section identifies the ingredient(s) contained in the product indicated on the SDS, including impurities and stabilizing additives. This section includes information on substances, mixtures, and all chemicals where a trade secret is claimed. The required information consists of:

Substances
- Chemical name.
- Common name and synonyms
- Chemical Abstracts Service (CAS) number and other unique identifiers.
- Impurities and stabilizing additives, which are themselves classified and which contribute to classification of the chemical.

Mixtures
- Same information required for substances.
- The chemical name and concentration (i.e., exact percentages) of all ingredients which are classified as health hazards and are
 - Present above their cut-off/concentration limits or
 - Present a health risk below the cut-off/concentration limits.
- The concentration (exact percentages) of each ingredient must be specified except concentration ranges may be used in the following situations:
 - A trade secret claim is made,
 - There is batch-to-batch verification, or
 - The SDS is used for a group of substantially similar mixtures.

Where a trade secret is claimed, a statement that the specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret is required.

Section 4. First-Aid measures

This section describes the initial care that should be given by untrained responders to an individual who has been exposed to the chemical. The required information consists of:

- Necessary first-aid instructions by relevant routes of exposure (inhalation, skin and eye contact, and ingestion).
• Description of the most important symptoms or effects, and any symptoms that are acute or delayed.
• Indication for immediate medical care and special treatment needed, if necessary.

Section 5. Firefighting measures

This section provides recommendations for fighting a fire caused by the chemical. The requirement information consists of:
• Recommendations of suitable extinguishing equipment, and information about extinguishing equipment that is not appropriate for a particular situation.
• Advice on specific hazards that develop from the chemical during the fire, such as hazardous combustion products created when the chemical burns.
• Recommendations on special protective equipment or precautions for firefighters.

Section 6. Accidental release measures

This section provides recommendations on appropriate response to spills, leaks, or releases, including containment and cleanup practices to prevent or minimize exposure to people, properties, or the environment. It may also include recommendations distinguishing between responses for large and small spills where the spill volume has significant impact on the hazard. The required information may consist of recommendations for:
• Use of personal precautions (such as removal of ignition sources or providing sufficient ventilation) and protective equipment to prevent the contamination of skin, eyes, and clothing.
• Emergency procedures, including instructions for evacuations, consulting experts when needed, and appropriate protective clothing.
• Methods and materials used for containment (e.g., covering the drains and capping procedures).
• Cleanup procedures (e.g., appropriate techniques for neutralization, decontamination, cleaning or vacuuming; adsorbent materials; and/or equipment required for containment/cleanup).

Section 7. Handling and storage

This section provides guidance on safe handling practices and conditions for safe storage of chemicals. The required information consists of:
• Precautions for safe handling, including recommendations for handling incompatible chemicals, minimizing the release of the chemical into the environment, and providing advice on general hygiene practices (e.g., eating, drinking, and smoking in work areas is prohibited).
• Recommendations on the conditions for safe storage, including any incompatibilities. Provide advice on specific storage requirements (e.g., ventilation requirements).

Section 8. Exposure controls/personal protection

This section indicates the exposure limits, engineering controls, and personal protective measures that can be used to minimize worker exposure. The required information consists of:
• OSHA Permissible Exposure Limits (PELs), American Conference of Government Industrial Hygienist (ACGIH), Threshold Limit Values (TLVs), and any other exposure limit used or recommended by the chemical manufacturer, importer, or employer preparing the safety data sheet, where available.
• Appropriate engineering controls (e.g., use local exhaust ventilation, or use only in an enclosed system).
• Recommendations for personal protective measures to prevent illness or injury from exposure to chemicals, such as Personal Protective Equipment (e.g., appropriate types of eye, face, skin or respiratory protection needed based on hazards and potential exposure).

Section 9. Physical and chemical properties

This section identifies physical and chemical properties associated with substance or mixture. The minimum required information:
• Appearance (physical state, color, etc.);
• Upper/lower flammability or exposure limits;
• Odor;
• Vapor pressure;
• Odor threshold;
• pH;
• Relative density;
• Melting point/freezing point;
• Solubility/solubility’s;
• Initial boiling point and boiling range;
• Flash point;
• Evaporation rate;
• Flammability (solid, gas)
• Upper/lower flammability or explosive limits;
• Vapor pressure;
• Vapor density;
• Relative density;
• Solubility/solubility’s;
• Partition coefficient: n-octanol/water;
• Auto-ignition temperature;
• Decomposition temperature; and
• Viscosity.

The SDS may not contain every item on the above list because information may not be relevant or is not available. When this occurs, a notation to that effect must be made for that chemical properly. Manufacturers may also add other relevant properties, such as the dust deflagration index (Kst) for combustible dust, used to evaluate a dust’s explosive potential.

Section 10. Stability and reactivity

This section describes the reactivity hazards of the chemical and the chemical stability information. This section is broken into three parts: reactivity, chemical stability, and other. The required information consists of:
Reactivity:
- Description of the specific test data for the chemical(s). This data can be for class or family of the chemical if such data adequately represent the anticipated hazard of the chemical(s), where possible.

Chemical stability:
- Indication of whether the chemical is stable or unstable under normal ambient temperature and conditions while in storage and being handled.
- Description of any stabilizers that may be needed to maintain chemical stability.
- Indication of any safety issues that may arise should the product change in physical appearance.

Other:
- Indication of the possibility of hazardous reactions, including a statement whether the chemical will react or polymerize, which could release excess pressure or heat, or create other hazardous conditions. Also, a description of the conditions under which hazardous reactions may occur.
- List of all conditions that should be avoided (e.g., static discharge, shock, vibrations, or environmental conditions that may lead to hazardous conditions).
- List of all classes of incompatible materials (e.g., classes of chemicals or specific substances) with which the chemical could react to produce a hazardous situation.
- List of any known or anticipated hazardous decomposition products that could be produced because of use, storage, or heating. Hazardous combustion products should also be included in Section 5 (Fire-Fighting Measures) of the SDS.

Section 11. Toxicology information

This section must contain a description of the various toxicological (health) effects and available data to identify those effects, including:
- Information on the likely routes of exposure (inhalation, ingestion, skin and eye contact);
- Description of the delayed, immediate, or chronic effects from short and long-term exposure.
- The numerical measures of toxicity, e.g., acute toxicity estimates such as the LD50 (median lethal dose), the estimated amount of a substance expected to kill 50% of test animals in a single dose.
- Description of the symptoms. This description includes the symptoms associated with exposure to the chemical including symptoms from the lowest to the most severe exposure.
- Indication of whether the chemical is listed in the National Toxicology Program (NTP) Report on Carcinogens (latest edition) or has been found to be a potential carcinogen in the International Agency for Research on Cancer (IARC) Monographs (latest editions) or found to be a potential carcinogen by OSHA.

Section 12. Ecological information

This section provides information to evaluate the environmental impact of the chemical(s) if it were released to the environment. The information may include:
- Description of appropriate disposal containers to use.
- Recommendations of appropriate disposal methods to employ.
- Description of the physical and chemical properties that may affect disposal activities.
- Language discouraging sewage disposal.
• Any special precautions for landfills or incineration activities.

Section 13. Disposal Considerations

• Description of appropriate disposal containers to use.
• Recommendations of appropriate disposal methods to employ.
• Description of the physical and chemical properties that may affect disposal activities.
• Language discouraging sewage disposal.
• Any special precautions for landfills or incineration activities.

Section 14. Transport information

This section provides guidance on classification information for shipping and transporting of hazardous chemical(s) by road, air, rail, or sea.

• UN number (i.e., four-figure identification number of the substance).
• UN proper shipping name.
• Transport hazard class or classes.
• Packing group number, if applicable, based on the degree of hazard.
• Environmental hazards, i.e., identify if it is a marine pollutant according to the International Maritime Dangerous Goods Code (IMDG Code).
• Guidance on transport in bulk according to ANNEX II of MARPOL 73/78 and the International Code for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk [International Bulk Chemical Code (IBC Code)].
• Any special precautions which an employee should be aware of or needs to comply with, in connection with transport or conveyance whether within or outside their premises (indicate when information is not available).

Section 15. Regulatory information

This section identifies the safety, health, and environmental regulations specific for the product that is not indicated anywhere else on the SDS. The information may include:

• Any national and/or regional regulatory information of the chemical or mixtures (including any OSHA, Department of Transportation, Environmental Protection Agency, or Consumer Product Safety Commission regulations).

Section 16. Other information

This section indicates when the SDS was prepared or when the last known revision was made. The SDS may also state where the changes have been made to the previous version. Other useful information may be included here also.

(a) Purpose. (1) The purpose of this section is to ensure that the hazards of all chemicals produced or imported are classified, and that information concerning the classified hazards is transmitted to employers and employees. The requirements of this section are intended to be consistent with the provisions of the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS), Revision 3. The transmittal of information is to be accomplished by means of comprehensive hazard communication programs, which are to include container labeling and other forms of warning, safety data sheets and employee training.

(2) This occupational safety and health standard is intended to address comprehensively the issue of classifying the potential hazards of chemicals, and communicating information concerning hazards and appropriate protective measures to employees, and to preempt any legislative or regulatory enactments of a state, or political subdivision of a state, pertaining to this subject. Classifying the potential hazards of chemicals and communicating information concerning hazards and appropriate protective measures to employees, may include, for example, but is not limited to, provisions for: developing and maintaining a written hazard communication program for the workplace, including lists of hazardous chemicals present; labeling of containers of chemicals in the workplace, as well as of containers of chemicals being shipped to other workplaces; preparation and distribution of safety data sheets to employees and downstream employers; and development and implementation of employee training programs regarding hazards of chemicals and protective measures. Under section 18 of the Act, no state or political subdivision of a state may adopt or enforce any requirement relating to the issue addressed by this Federal standard, except pursuant to a Federally-approved state plan.

(b) Scope and application. (1) This section requires chemical manufacturers or importers to classify the hazards of chemicals which they produce or import, and all employers to provide information to their employees about the hazardous chemicals to which they are exposed, by means of a hazard communication program, labels and other forms of warning, safety data sheets, and information and training. In addition, this section requires distributors to transmit the required information to employers. (Employers who do not produce or import chemicals need only focus on those parts of this rule that deal with establishing a workplace program and communicating information to their workers.)

(2) This section applies to any chemical which is known to be present in the workplace in such a manner that employees may be exposed under normal conditions of use or in a foreseeable emergency.

(3) This section applies to laboratories only as follows:

(i) Employers shall ensure that labels on incoming containers of hazardous chemicals are not removed or defaced;

(ii) Employers shall maintain all safety data sheets that are received with incoming shipments of hazardous chemicals, and ensure that they are readily accessible during each workshift to laboratory employees when they are in their work areas;

(iii) Employers shall ensure that laboratory employees are provided information and training in accordance with paragraph (h) of this section, except for the location and availability of the written hazard communication program under paragraph (h)(2)(iii) of this section; and,

(iv) Laboratory employers that ship hazardous chemicals are considered to be either a chemical manufacturer or a distributor under this rule, and thus must ensure that any containers of hazardous chemicals leaving the laboratory are labeled in accordance with paragraph (f) of this section, and that a safety data sheet is provided to distributors and other employers in accordance with paragraphs (g)(6) and (g)(7) of this section.

(4) In work operations where employees only handle chemicals in sealed containers which are not opened under normal conditions of use (such as are found in marine cargo handling, warehousing, or retail sales), this section applies to these operations only as follows:

(i) Employers shall ensure that labels on incoming containers of hazardous chemicals are not removed or defaced;

(ii) Employers shall maintain copies of any safety data sheets that are received with incoming shipments of the sealed containers of hazardous chemicals, shall obtain a safety data sheet as soon as possible for sealed containers of hazardous chemicals received without a safety data sheet if an employee requests the safety data sheet, and shall ensure that the safety data sheets are readily accessible during each work shift to employees when they are in their work area(s); and

(iii) Employers shall ensure that employees are provided with information and training in accordance with paragraph (h) of this section (except for the location and availability of the written hazard communication program under paragraph (h)(2)(iii) of this section), to the extent necessary to protect them in the event of a spill or leak of a hazardous chemical from a sealed container.

(5) This section does not require labeling of the following chemicals:

(i) Any pesticide as such term is defined in the Federal Insecticide, Fungicide, and Rodenticide Act (7 U.S.C. 136 et seq.), when subject to the labeling requirements of that Act and labeling regulations issued under that Act by the Environmental Protection Agency;

(ii) Any chemical substance or mixture as such terms are defined in the Toxic Substances Control Act (15 U.S.C. 2601 et seq.), when subject to the labeling requirements of that Act and labeling regulations issued under that Act by the Environmental Protection Agency;

(iii) Any food, food additive, color additive, drug, cosmetic, or medical or veterinary device or product, including materials intended for use as ingredients in such products (e.g. flavors and fragrances), as such terms are defined in
the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 301 et seq.) or the Virus-Serum-Toxin Act of 1913 (21 U.S.C. 151 et seq.), and regulations issued under those Acts, when they are subject to the labeling requirements under those Acts by either the Food and Drug Administration or the Department of Agriculture;

(iv) Any distilled spirits (beverage alcohols), wine, or malt beverage intended for nonindustrial use, as such terms are defined in the Federal Alcoholic Administration Act (27 U.S.C. 201 et seq.) and regulations issued under that Act, when subject to the labeling requirements of that Act and labeling regulations issued under that Act by the Bureau of Alcohol, Tobacco, Firearms and Explosives;

(v) Any consumer product or hazardous substance as those terms are defined in the Consumer Product Safety Act (15 U.S.C. 2051 et seq.) and Federal Hazardous Substances Act (15 U.S.C. 1261 et seq.) respectively, when subject to a consumer product safety standard or labeling requirement of those Acts, or regulations issued under those Acts by the Consumer Product Safety Commission; and,

(vi) Agricultural or vegetable seed treated with pesticides and labeled in accordance with the Federal Seed Act (7 U.S.C. 1551 et seq.) and the labeling regulations issued under that Act by the Department of Agriculture.

(6) This section does not apply to: (i) Any hazardous waste as such term is defined by the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act of 1976, as amended (42 U.S.C. 6901 et seq.), when subject to regulations issued under that Act by the Environmental Protection Agency;

(ii) Any hazardous substance as such term is defined by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) (42 U.S.C. 9601 et seq.) when the hazardous substance is the focus of remedial or removal action being conducted under CERCLA in accordance with Environmental Protection Agency regulations.

(iii) Tobacco or tobacco products;

(iv) Wood or wood products, including lumber which will not be processed, where the chemical manufacturer or importer can establish that the only hazard they pose to employees is the potential for flammability or combustibility (wood or wood products which have been treated with a hazardous chemical covered by this standard, and wood which may be subsequently sawed or cut, generating dust, are not exempted);

(v) Articles (as that term is defined in paragraph (c) of this section);

(vi) Food or alcoholic beverages which are sold, used, or prepared in a retail establishment (such as a grocery store, restaurant, or drinking place), and foods intended for personal consumption by employees while in the workplace; and

(vii) Any drug, as that term is defined in the Federal Food, Drug, and Cosmetic Act (21 U.S.C. 301 et seq.), when it is in solid, final form for direct administration to the patient (e.g., tablets or pills); drugs which are packaged by the chemical manufacturer for sale to consumers in a retail establishment (e.g., over-the-counter drugs); and drugs intended for personal consumption by employees while in the workplace (e.g., first aid supplies);

(viii) Cosmetics which are packaged for sale to consumers in a retail establishment, and cosmetics intended for personal consumption by employees while in the workplace;

(ix) Any consumer product or hazardous substance, as those terms are defined in the Consumer Product Safety Act (15 U.S.C. 2051 et seq.) and Federal Hazardous Substances Act (15 U.S.C. 1261 et seq.) respectively, where the employer can show that it is used in the workplace for the purpose intended by the chemical manufacturer or importer of the product, and the use results in a duration and frequency of exposure which is not greater than the range of exposures that could reasonably be experienced by consumers when used for the purpose intended;

(x) Nuisance particulates where the chemical manufacturer or importer can establish that they do not pose any physical or health hazard covered under this section;

(xi) Ionizing and nonionizing radiation; and,

(xii) Biological hazards.

(c) Definitions.

Article means a manufactured item other than a fluid or particle: (i) which is formed to a specific shape or design during manufacture; (ii) which has end use function(s) dependent in whole or in part upon its shape or design during end use; and (iii) which under normal conditions of use does not release more than very small quantities, e.g., minute or trace amounts of a hazardous chemical (as determined under paragraph (d) of this section), and does not pose a physical hazard or health risk to employees.

Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee.

Chemical means any substance, or mixture of substances.

Chemical manufacturer means an employer with a workplace where chemical(s) are produced for use or distribution.

Chemical name means the scientific designation of a chemical in accordance with the nomenclature system developed by the International Union of Pure and Applied Chemistry (IUPAC) or the Chemical Abstracts Service (CAS) rules of nomenclature, or a name that will clearly identify the chemical for the purpose of conducting a hazard classification.

Classification means to identify the relevant data regarding the hazards of a chemical; review those data to ascertain the hazards associated with the chemical; and decide whether the chemical will be classified as hazardous according to the definition of hazardous chemical in this section. In addition, classification for health and physical hazards includes the determination of the degree of hazard,
where appropriate, by comparing the data with the criteria for health and physical hazards.

Commercial account means an arrangement whereby a retail distributor sells hazardous chemicals to an employer, generally in large quantities over time and/or at costs that are below the regular retail price.

Common name means any designation or identification such as code name, code number, trade name, brand name or generic name used to identify a chemical other than by its chemical name.

Container means any bag, barrel, bottle, box, can, cylinder, drum, reaction vessel, storage tank, or the like that contains a hazardous chemical. For purposes of this section, pipes or piping systems, and engines, fuel tanks, or other operating systems in a vehicle, are not considered to be containers.

Designated representative means any individual or organization to whom an employee gives written authorization to exercise such employee’s rights under this section. A recognized or certified collective bargaining agent shall be treated as a designated representative without regard to written employee authorization.

Director means the Director, National Institute for Occupational Safety and Health, U.S. Department of Health and Human Services, or designee.

Distributor means a business, other than a chemical manufacturer or importer, which supplies hazardous chemicals to other distributors or to employers.

Employee means a worker who may be exposed to hazardous chemicals under normal operating conditions or in foreseeable emergencies. Workers such as office workers or bank tellers who encounter hazardous chemicals only in non-routine, isolated instances are not considered.

Employer means a person engaged in a business where chemicals are either used, distributed, or are produced for use or distribution, including a contractor or subcontractor.

Exposure or exposed means that an employee is subjected in the course of employment to a chemical that is a physical or health hazard, and includes potential (e.g., accidental or possible) exposure. “Subjected” in terms of health hazards includes any route of entry (e.g., inhalation, ingestion, skin contact or absorption.)

Forseeable emergency means any potential occurrence such as, but not limited to, equipment failure, rupture of containers, or failure of control equipment which could result in an uncontrolled release of a hazardous chemical into the workplace.

Hazard category means the division of criteria within each hazard class, e.g., oral acute toxicity and flammable liquids include four hazard categories. These categories compare hazard severity within a hazard class and should not be taken as a comparison of hazard categories more generally.

Hazard class means the nature of the physical or health hazards, e.g., flammable solid, carcinogen, oral acute toxicity.
Pictogram means a composition that may include a symbol plus other graphic elements, such as a border, background pattern, or color, that is intended to convey specific information about the hazards of a chemical. Eight pictograms are designated under this standard for application to a hazard category.

Precautionary statement means a phrase that describes recommended measures that should be taken to minimize or prevent adverse effects resulting from exposure to a hazardous chemical, or improper storage or handling.

Produce means to manufacture, process, formulate, blend, extract, generate, emit, or repack.

Product identifier means the name or number used for a hazardous chemical on a label or in the SDS. It provides a unique means by which the user can identify the chemical. The product identifier used shall permit cross-references to be made among the list of hazardous chemicals required in the written hazard communication program, the label and the SDS.

Pyrophoric gas means a chemical in a gaseous state that will ignite spontaneously in air at a temperature of 130 degrees F (54.4 degrees C) or below.

Responsible party means someone who can provide additional information on the hazardous chemical and appropriate emergency procedures, if necessary.

Safety data sheet (SDS) means written or printed material concerning a hazardous chemical that is prepared in accordance with paragraph (g) of this section.

Signal word means a word used to indicate the relative level of severity of hazard and alert the reader to a potential hazard on the label. The signal words used in this section are “danger” and “warning.” “Danger” is used for the more severe hazards, while “warning” is used for the less severe.

Simple asphyxiating means a substance or mixture that displaces oxygen in the ambient atmosphere, and can thus cause oxygen deprivation in those who are exposed, leading to unconsciousness and death.

Specific chemical identity means the chemical name, Chemical Abstracts Service (CAS) Registry Number, or any other information that reveals the precise chemical designation of the substance.

Substance means chemical elements and their compounds in the natural state or obtained by any production process, including any additive necessary to preserve the stability of the product and any impurities deriving from the process used, but excluding any solvent which may be separated without affecting the stability of the substance or changing its composition.

Trade secret means any confidential formula, pattern, process, device, information or compilation of information that is used in an employer’s business, and that gives the employer an opportunity to obtain an advantage over competitors who do not know or use it. Appendix E to §1910.1200—Definition of Trade Secret, sets out the criteria to be used in evaluating trade secrets.

Use means to package, handle, react, emit, extract, generate as a byproduct, or transfer.

Work area means a room or defined space in a workplace where hazardous chemicals are produced or used, and where employees are present.

Workplace means an establishment, job site, or project, at one geographical location containing one or more work areas.

(d) Hazard classification. (1) Chemical manufacturers and importers shall evaluate chemicals produced in their workplaces or imported by them to classify the chemicals in accordance with this section. For each chemical, the chemical manufacturer or importer shall determine the hazard classes, and, where appropriate, the category of each class that apply to the chemical being classified. Employers are not required to classify chemicals unless they choose not to rely on the classification performed by the chemical manufacturer or importer for the chemical to satisfy this requirement.

(2) Chemical manufacturers, importers or employers classifying chemicals shall identify and consider the full range of available scientific literature and other evidence concerning the potential hazards. There is no requirement to test the chemical to determine how to classify its hazards. Appendix A to §1910.1200 shall be consulted for classification of health hazards, and Appendix B to §1910.1200 shall be consulted for the classification of physical hazards.

(3) Mixtures. (i) Chemical manufacturers, importers, or employers evaluating chemicals shall follow the procedures described in Appendices A and B to §1910.1200 to classify the hazards of the chemicals, including determinations regarding when mixtures of the classified chemicals are covered by this section.

(ii) When classifying mixtures they produce or import, chemical manufacturers and importers of mixtures may rely on the information provided on the current safety data sheets of the individual ingredients, except where the chemical manufacturer or importer knows, or in the exercise of reasonable diligence should know, that the safety data sheet misstates or omits information required by this section.

(e) Written hazard communication program. (1) Employers shall develop, implement, and maintain at each workplace, a written hazard communication program which at least describes how the criteria specified in paragraphs (f), (g), and (h) of this section for labels and other forms of warning, safety data sheets, and employee information and training will be met, and which also includes the following:

(i) A list of the hazardous chemicals known to be present using a product identifier that is referenced on the appropriate safety data sheet (the list may be compiled for the workplace as a whole or for individual work areas); and,

(ii) The methods the employer will use to inform employees of the hazards of non-routine tasks (for example, the
cleaning of reactor vessels), and the hazards associated with chemicals contained in unlabeled pipes in their work areas.

(2) Multi-employer workplaces. Employers who produce, use, or store hazardous chemicals at a workplace in such a way that the employees of other employer(s) may be exposed (for example, employees of a construction contractor working on-site) shall additionally ensure that the hazard communication programs developed and implemented under this paragraph (e) include the following:

(i) The methods the employer will use to provide the other employer(s) on-site access to safety data sheets for each hazardous chemical the other employer(s)' employees may be exposed to while working;

(ii) The methods the employer will use to inform the other employer(s) of any precautionary measures that need to be taken to protect employees during the workplace's normal operating conditions and in foreseeable emergencies; and,

(iii) The methods the employer will use to inform the other employer(s) of the labeling system used in the workplace.

(3) The employer may rely on an existing hazard communication program to comply with these requirements, provided that it meets the criteria established in this paragraph (e).

(4) The employer shall make the written hazard communication program available, upon request, to employees, their designated representatives, the Assistant Secretary and the Director, in accordance with the requirements of 29 CFR 1910.20(e).

(5) Where employees must travel between workplaces during a workshift, i.e., their work is carried out at more than one geographical location, the written hazard communication program may be kept at the primary workplace facility.

(f) Labels and other forms of warning—(1) Labels on shipped containers. The chemical manufacturer, importer, or distributor shall ensure that each container of hazardous chemicals leaving the workplace is labeled, tagged, or marked. Hazards not otherwise classified do not have to be addressed on the container. Where the chemical manufacturer or importer is required to label, tag or mark the following information shall be provided:

(i) Product identifier;

(ii) Signal word;

(iii) Hazard statement(s);

(iv) Pictogram(s);

(v) Precautionary statement(s); and,

(vi) Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party.

(2) The chemical manufacturer, importer, or distributor shall ensure that the information provided under paragraphs (f)(1)(i) through (v) of this section is in accordance with Appendix C to §1910.1200, for each hazard class and associated hazard category for the hazardous chemical, prominently displayed, and in English (other languages may also be included if appropriate).

(3) The chemical manufacturer, importer, or distributor shall ensure that the information provided under paragraphs (f)(1)(i) through (iv) of this section is located together on the label, tag, or mark.

(4) Solid materials. For solid metal (such as a steel beam or a metal casting), solid wood, or plastic items that are not exempted as articles due to their downstream use, or shipments of whole grain, the required label may be transmitted to the customer at the time of the initial shipment, and need not be included with subsequent shipments to the same employer unless the information on the label changes;

(ii) The label may be transmitted with the initial shipment itself, or with the safety data sheet that is to be provided prior to or at the time of the first shipment; and,

(iii) This exception to requiring labels on every container of hazardous chemicals is only for the solid material itself, and does not apply to hazardous chemicals used in conjunction with, or known to be present with, the material and to which employees handling the items in transit may be exposed (for example, cutting fluids or pesticides in grains).

(5) Chemical manufacturers, importers, or distributors shall ensure that each container of hazardous chemicals leaving the workplace is labeled, tagged, or marked in accordance with this section in a manner which does not conflict with the requirements of the Hazardous Materials Transportation Act (49 U.S.C. 1801 et seq.) and regulations issued under that Act by the Department of Transportation.

(6) Workplace labeling. Except as provided in paragraphs (f)(7) and (f)(8) of this section, the employer shall ensure that each container of hazardous chemicals in the workplace is labeled, tagged or marked with either:

(i) The information specified under paragraphs (f)(1)(i) through (v) of this section for labels on shipped containers; or,

(ii) Product identifier and words, pictures, symbols, or combination thereof, which provide at least general information regarding the hazards of the chemicals, and which, in conjunction with the other information immediately available to employees under the hazard communication program, will provide employees with the specific information regarding the physical and health hazards of the hazardous chemical.

(7) The employer may use signs, placards, process sheets, batch tickets, operating procedures, or other such written materials in lieu of affixing labels to individual stationary process containers, as long as the alternative method identifies the containers to which it is applicable and conveys the information required by paragraph (f)(6) of this section to be on a label. The employer shall ensure the written materials are readily accessible to the employees in their work area throughout each work shift,

(8) The employer is not required to label portable containers into which hazardous chemicals are transferred from labeled containers, and which are intended only for the
immediate use of the employee who performs the transfer. For purposes of this section, drugs which are dispensed by a pharmacy to a health care provider for direct administration to a patient are exempted from labeling.

(9) The employer shall not remove or deface existing labels on incoming containers of hazardous chemicals, unless the container is immediately marked with the required information.

(10) The employer shall ensure that workplace labels or other forms of warning are legible, in English, and prominently displayed on the container, or readily available in the work area throughout each work shift. Employers having employees who speak other languages may add the information in their language to the material presented, as long as the information is presented in English as well.

(11) Chemical manufacturers, importers, distributors, or employers who become newly aware of any significant information regarding the hazards of a chemical shall revise the labels for the chemical within six months of becoming aware of the new information, and shall ensure that labels on containers of hazardous chemicals shipped after that time contain the new information. If the chemical is not currently produced or imported, the chemical manufacturer, importer, distributor, or employer shall add the information to the label before the chemical is shipped or introduced into the workplace again.

(g) Safety data sheets. (1) Chemical manufacturers and importers shall obtain or develop a safety data sheet for each hazardous chemical they produce or import. Employers shall have a safety data sheet in the workplace for each hazardous chemical which they use.

(2) The chemical manufacturer or importer preparing the safety data sheet shall ensure that it is in English (although the employer may maintain copies in other languages as well), and includes at least the following section numbers and headings, and associated information under each heading, in the order listed (See Appendix D to §1910.1200—Safety Data Sheets, for the specific content of each section of the safety data sheet):

(i) Section 1, Identification;
(ii) Section 2, Hazard(s) identification;
(iii) Section 3, Composition/information on ingredients;
(iv) Section 4, First-aid measures;
(v) Section 5, Fire-fighting measures;
(vi) Section 6, Accidental release measures;
(vii) Section 7, Handling and storage;
(viii) Section 8, Exposure controls/personal protection;
(ix) Section 9, Physical and chemical properties;
(x) Section 10, Stability and reactivity;
(xi) Section 11, Toxicological information;
(xii) Section 12, Ecological information;
(xiii) Section 13, Disposal considerations;
(xiv) Section 14, Transport information;
(xv) Section 15, Regulatory information; and
(xvi) Section 16, Other information, including date of preparation or last revision.
(iv) Wholesale distributors selling hazardous chemicals to employers over-the-counter may also provide safety data sheets upon the request of the employer at the time of the over-the-counter purchase, and shall post a sign or otherwise inform such employers that a safety data sheet is available;

(v) If an employer without a commercial account purchases a hazardous chemical from a retail distributor not required to have safety data sheets on file (i.e., the retail distributor does not have commercial accounts and does not use the materials), the retail distributor shall provide the employer, upon request, with the name, address, and telephone number of the chemical manufacturer, importer, or distributor from which a safety data sheet can be obtained;

(vi) Wholesale distributors shall also provide safety data sheets to employers or other distributors upon request; and,

(vii) Chemical manufacturers, importers, and distributors need not provide safety data sheets to retail distributors that have informed them that the retail distributor does not sell the product to commercial accounts or open the sealed container to use it in their own workplaces.

(8) The employer shall maintain in the workplace copies of the required safety data sheets for each hazardous chemical, and shall ensure that they are readily accessible during each work shift to employees when they are in their work area(s). (Electronic access and other alternatives to maintaining paper copies of the safety data sheets are permitted as long as no barriers to immediate employee access in each workplace are created by such options.)

(9) Where employees must travel between workplaces during a work shift, i.e., their work is carried out at more than one geographical location, the safety data sheets may be kept at the primary workplace facility. In this situation, the employer shall ensure that employees can immediately obtain the required information in an emergency.

(10) Safety data sheets may be kept in any form, including operating procedures, and may be designed to cover groups of hazardous chemicals in a work area where it may be more appropriate to address the hazards of a process rather than individual hazardous chemicals. However, the employer shall ensure that in all cases the required information is provided for each hazardous chemical, and is readily accessible during each work shift to employees when they are in their work area(s).

(11) Safety data sheets shall also be made readily available, upon request, to designated representatives, the Assistant Secretary, and the Director, in accordance with the requirements of §1910.1020(e).

(h) Employee information and training. (1) Employers shall provide employees with effective information and training on hazardous chemicals in their work area at the time of their initial assignment, and whenever a new chemical hazard the employees have not previously been trained about is introduced into their work area. Information and training may be designed to cover categories of hazards (e.g., flammability, carcinogenicity) or specific chemicals. Chemical-specific information must always be available through labels and safety data sheets.
(2) Information. Employees shall be informed of:

(i) The requirements of this section;

(ii) Any operations in their work area where hazardous chemicals are present; and,

(iii) The location and availability of the written hazard communication program, including the required list(s) of hazardous chemicals, and safety data sheets required by this section.

(3) Training. Employee training shall include at least:

(i) Methods and observations that may be used to detect the presence or release of a hazardous chemical in the work area (such as monitoring conducted by the employer, continuous monitoring devices, visual appearance or odor of hazardous chemicals when being released, etc.);

(ii) The physical, health, simple asphyxiation, combustible dust, and pyrophoric gas hazards, as well as hazards not otherwise classified, of the chemicals in the work area;

(iii) The measures employees can take to protect themselves from these hazards, including specific procedures the employer has implemented to protect employees from exposure to hazardous chemicals, such as appropriate work practices, emergency procedures, and personal protective equipment to be used; and,

(iv) The details of the hazard communication program developed by the employer, including an explanation of the labels received on shipped containers and the workplace labeling system used by the employer; the safety data sheet, including the order of information and how employees can obtain and use the appropriate hazard information.

(a) Trade secrets. (1) The chemical manufacturer, importer, or employer may withhold the specific chemical identity, including the chemical name, other specific identification of a hazardous chemical, or the exact percentage (concentration) of the substance in a mixture, from the safety data sheet, provided that:

(i) The claim that the information withheld is a trade secret can be supported;

(ii) Information contained in the safety data sheet concerning the properties and effects of the hazardous chemical is disclosed;

(iii) The safety data sheet indicates that the specific chemical identity and/or percentage of composition is being withheld as a trade secret; and,

(iv) The specific chemical identity and percentage is made available to health professionals, employees, and designated representatives in accordance with the applicable provisions of this paragraph (a).

(2) Where a treating physician or nurse determines that a medical emergency exists and the specific chemical identity and/or specific percentage of composition of a hazardous chemical is necessary for emergency or first-aid treatment, the chemical manufacturer, importer, or employer shall immediately disclose the specific chemical identity or percentage composition of a trade secret chemical to that treating physician or nurse, regardless of the existence of a written statement of need or a confidentiality agreement. The chemical manufacturer, importer, or employer may require a written statement of need and confidentiality agreement, in accordance with the provisions of paragraphs (i)(3) and (4) of this section, as soon as circumstances permit.

(3) In non-emergency situations, a chemical manufacturer, importer, or employer shall, upon request, disclose a specific chemical identity or percentage composition, otherwise permitted to be withheld under paragraph (i)(1) of this section, to a health professional (i.e., physician, industrial hygienist, toxicologist, epidemiologist, or occupational health nurse) providing medical or other occupational health services to exposed employee(s), and to employees or designated representatives, if:

(i) The request is in writing;

(ii) The request describes in reasonable detail one or more of the following occupational health needs for the information:

(A) To assess the hazards of the chemicals to which employees will be exposed;

(B) To conduct or assess sampling of the workplace atmosphere to determine employee exposure levels;

(C) To conduct pre-assignment or periodic medical surveillance of exposed employees;

(D) To provide medical treatment to exposed employees;

(E) To select or assess appropriate personal protective equipment for exposed employees;

(F) To design or assess engineering controls or other protective measures for exposed employees; and,

(G) To conduct studies to determine the health effects of exposure.

(iii) The request explains in detail why the disclosure of the specific chemical identity or percentage composition is essential and that, in lieu thereof, the disclosure of the following information to the health professional, employee, or designated representative, would not satisfy the purposes described in paragraph (i)(3)(ii) of this section:

(A) The properties and effects of the chemical;

(B) Measures for controlling workers’ exposure to the chemical;

(C) Methods of monitoring and analyzing worker exposure to the chemical; and,

(D) Methods of diagnosing and treating harmful exposures to the chemical;

(iv) The request includes a description of the procedures to be used to maintain the confidentiality of the disclosed information; and,

(v) The health professional, and the employer or contractor of the services of the health professional (i.e., downstream employer, labor organization, or individual

HAZARD COMMUNICATION–8

10/12
employee), employee, or designated representative, agree in a written confidentiality agreement that the health professional, employee, or designated representative, will not use the trade secret information for any purpose other than the health need(s) asserted and agree not to release the information under any circumstances other than to OSHA, as provided in paragraph (i)(6) of this section, except as authorized by the terms of the agreement or by the chemical manufacturer, importer, or employer.

(4) The confidentiality agreement authorized by paragraph (i)(3)(iv) of this section:

(i) May restrict the use of the information to the health purposes indicated in the written statement of need;

(ii) May provide for appropriate legal remedies in the event of a breach of the agreement, including stipulation of a reasonable pre-estimate of likely damages; and,

(iii) May not include requirements for the posting of a penalty bond.

(5) Nothing in this standard is meant to preclude the parties from pursuing non-contractual remedies to the extent permitted by law.

(6) If the health professional, employee, or designated representative receiving the trade secret information decides that there is a need to disclose it to OSHA, the chemical manufacturer, importer, or employer who provided the information shall be informed by the health professional, employee, or designated representative prior to, or at the same time as, such disclosure.

(7) If the chemical manufacturer, importer, or employer denies a written request for disclosure of a specific chemical identity or percentage composition, the denial must:

(i) Be provided to the health professional, employee, or designated representative, within thirty days of the request;

(ii) Be in writing;

(iii) Include evidence to support the claim that the specific chemical identity or percent of composition is a trade secret;

(iv) State the specific reasons why the request is being denied; and,

(v) Explain in detail how alternative information may satisfy the specific medical or occupational health need without revealing the trade secret.

(8) The health professional, employee, or designated representative whose request for information is denied under paragraph (i)(3) of this section may refer the request and the written denial of the request to OSHA for consideration.

(9) When a health professional, employee, or designated representative refers the denial to OSHA under paragraph (i)(8) of this section, OSHA shall consider the evidence to determine if:

(i) The chemical manufacturer, importer, or employer has supported the claim that the specific chemical identity or percentage composition is a trade secret;

(ii) The health professional, employee, or designated representative has supported the claim that there is a medical or occupational health need for the information; and,

(iii) The health professional, employee, or designated representative has demonstrated adequate means to protect the confidentiality.

(10)(i) If OSHA determines that the specific chemical identity or percentage composition requested under paragraph (i)(3) of this section is not a "bona fide" trade secret, or that it is a trade secret, but the requesting health professional, employee, or designated representative has a legitimate medical or occupational health need for the information, has executed a written confidentiality agreement, and has shown adequate means to protect the confidentiality of the information, the chemical manufacturer, importer, or employer will be subject to citation by OSHA.

(ii) If a chemical manufacturer, importer, or employer demonstrates to OSHA that the execution of a confidentiality agreement would not provide sufficient protection against the potential harm from the unauthorized disclosure of a trade secret, the Assistant Secretary may issue such orders or impose such additional limitations or conditions upon the disclosure of the requested chemical information as may be appropriate to assure that the occupational health services are provided without an undue risk of harm to the chemical manufacturer, importer, or employer.

(11) If a citation for a failure to release trade secret information is contested by the chemical manufacturer, importer, or employer, the matter will be adjudicated before the Occupational Safety and Health Review Commission in accordance with the Act's enforcement scheme and the applicable Commission rules of procedure. In accordance with the Commission rules, when a chemical manufacturer, importer, or employer continues to withhold the information during the contest, the Administrative Law Judge may review the citation and supporting documentation "in camera" or issue appropriate orders to protect the confidentiality of such matters.

(12) Notwithstanding the existence of a trade secret claim, a chemical manufacturer, importer, or employer shall, upon request, disclose to the Assistant Secretary any information which this section requires the chemical manufacturer, importer, or employer to make available. Where there is a trade secret claim, such claim shall be made no later than at the time the information is provided to the Assistant Secretary so that suitable determinations of trade secret status can be made and the necessary protections can be implemented.

(13) Nothing in this paragraph shall be construed as requiring the disclosure under any circumstances of process information which is a trade secret.

(i) Effective dates. (1) Employers shall train employees regarding the new label elements and safety data sheets format by December 1, 2013.

(2) Chemical manufacturers, importers, distributors, and employers shall be in compliance with all modified provisions of this section no later than June 1, 2015, except:
(i) After December 1, 2015, the distributor shall not ship containers labeled by the chemical manufacturer or importer unless the label has been modified to comply with paragraph (f)(1) of this section.

(ii) All employers shall, as necessary, update any alternative workplace labeling used under paragraph (f)(6) of this section, update the hazard communication program required by paragraph (h)(1), and provide any additional employee training in accordance with paragraph (h)(3) for newly identified physical or health hazards no later than June 1, 2016.

(3) Chemical manufacturers, importers, distributors, and employers may comply with either §1910.1200 revised as of October 1, 2011, or the current version of this standard, or both during the transition period.

NOTE: The effective date of the clarification that the exemption of wood and wood products from the Hazard Communication standard in paragraph (b)(6)(iv) only applies to wood and wood products including lumber which will not be processed, where the manufacturer or importer can establish that the only hazard they pose to employees is the potential for flammability or combustibility, and that the exemption does not apply to wood or wood products which have been treated with a hazardous chemical covered by this standard, and wood which may be subsequently sawed or cut generating dust has been stayed from March 11, 1994 to August 11, 1994.

APPENDIX A TO §1910.1200—HEALTH HAZARD CRITERIA (MANDATORY)

A.01 GENERAL CLASSIFICATION CONSIDERATIONS

A.01.01 Classification

A.01.01.1 The term "hazard classification" is used to indicate that only the intrinsic hazardous properties of chemicals are considered. Hazard classification incorporates three steps:

(a) Identification of relevant data regarding the hazards of a chemical;

(b) Subsequent review of those data to ascertain the hazards associated with the chemical;

(c) Determination of whether the chemical will be classified as hazardous and the degree of hazard.

A.01.01.2 For many hazard classes, the criteria are semi-quantitative or qualitative and expert judgment is required to interpret the data for classification purposes.

A.02 Available Data, Test Methods and Test Data Quality

A.02.02.1 There is no requirement for testing chemicals. A.02.02.2 The criteria for determining health hazards are test method neutral, i.e., they do not specify particular test methods, as long as the methods are scientifically validated. A.02.02.3 The term "scientifically validated" refers to the process by which the reliability and the relevance of a procedure are established for a particular purpose. Any test that determines hazardous properties, which are conditionally recognized scientific principles, can be used for purposes of a hazard determination for health hazards. Test conditions need to be standardized so that the results are reproducible with a given substance, and the standardized test yields "valid" data for defining the hazard class of concern. A.02.02.4 Existing test data are acceptable for classifying chemicals, although expert judgment also may be needed for classification purposes. A.02.02.5 The effect of a chemical on biological systems is influenced, by the physico-chemical properties of the substance and/or ingredients of the mixture and the way in which ingreditant substances are biologically available. A chemical need not be classified when it can be shown by conclusive experimental data from scientifically validated test methods that the chemical is not biologically available. A.02.02.6 For classification purposes, biological data and experience on the effects of chemicals on humans (e.g., occupational data, data from accident databases) shall be taken into account in the evaluation of the health hazard of a chemical. A.03 Classification Based on Weight of Evidence

A.03.03.1 For some hazard classes, classification results directly when the data satisfy the criteria. For others, classification of a chemical shall be determined on the basis of the total weight of evidence using expert judgment. This means that all available information bearing on the classification of hazard shall be considered together, including the results of valid in vitro tests, relevant animal data, and human experience such as epidemiological and clinical studies and well-documented case reports and observations. A.03.03.2 The quality and consistency of the data shall be considered. Information on chemicals related to the material being classified shall be considered as appropriate, as well as site of action and mechanism or mode of action study results. Both positive and negative results shall be considered together in a single weight-of-evidence determination. A.03.03.3 Positive effects which are consistent with the criteria for classification, whether seen in humans or animals, shall normally justify classification. Where evidence is available from both humans and animals and there is a conflict between the findings, the quality and reliability of the evidence from both sources in order to resolve the question of classification. Reliable, good quality human data shall generally have precedence over other data. However, even well-designed and conducted epidemiological studies may lack a sufficient number of subjects to detect relative rare but still significant effects. Therefore, positive results from well-conducted animal studies are not necessarily negated by the lack of positive human experience but require an assessment of the robustness, quality and statistical power of both the human and animal data.

A.03.04 Route of exposure, mechanistic information, and metabolism studies are pertinent to determining the relevance of an effect in humans. When such information raises doubt about relevance in humans, a lower classification may be warranted. Where there is scientific evidence demonstrating that the mechanism or mode of action is not relevant to humans, the chemical should not be classified. A.03.05 Both positive and negative results are considered together in the weight of evidence determination. However, a single positive study performed according to good scientific principles and with statistically and biologically significant positive results may justify classification. A.04 Considerations for the Classification of Mixtures

A.04.04.1 For most hazard classes, the recommended process of classification of mixtures is based on the following sequence:

(a) Where test data are available for the complete mixture, the classification of the mixture will always be based on those data;

(b) Where test data are not available for the mixture itself, the bridging principles described in each health hazard chapter of this appendix shall be considered for classification of the mixture;

(c) If test data are not available for the mixture itself, and the available information is not sufficient to allow application of the above-mentioned bridging principles, then the method(s) described in each chapter for estimating the hazards based on the information known will be applied to classify the mixture (e.g., application of cut-off values/concentration limits).

A.04.04.2 An exception to the above order of precedence is made for Carcinogenicity, Germ Cell Mutagenicity, and Reproductive Toxicity. For these three hazard classes, mixtures shall be classified based upon information on the ingredient substances, unless on a case-by-case basis, justification can be provided for classifying based upon the mixture as a whole. See chapters A.5, A.6, and A.7 for further information on case-by-case bases.

A.04.04.3 Use of cut-off values/concentration limits.

A.04.04.3.1 When classifying an untested mixture based on the hazards of its ingredients, cut-off values/concentration limits for the classified ingredients of the mixture are used for several hazard classes. While the adopted cut-off values/concentration limits adequately identify the hazard for most mixtures, there may be some that contain hazards at extremely low concentrations than the specified cut-off values/concentration limits that still pose an identifiable hazard. There may also be cases where the cut-off value/concentration limit is considerably lower than the established non-hazardous level for an ingredient.

A.04.04.3.2 If the classifier has information that the hazard of an ingredient will be evident (i.e., it presents a health risk) below the specified cut-off value/concentration limit, the mixture containing that ingredient shall be classified accordingly.

A.04.04.3.3 In exceptional cases, conclusive data may demonstrate that the hazard of an ingredient will not be evident (i.e., it does not present a health risk) when present at a level above the specified cut-off value/concentration limit(s). In these cases the mixture may be classified according to those data. The data must exclude the possibility that the ingredient will behave in the mixture in a manner that would increase the hazard over that of the pure substance. Furthermore, the mixture must not contain ingredients that would affect that determination.
§1910.1200

1910 OSHA GUIDE

A.0.4.4 Synergistic or antagonistic effects.

When performing an assessment in accordance with these requirements, the evaluator must take into account all available information about the potential occurrence of synergistic effects among the ingredients of the mixture. Lowering classification of a mixture to a less hazardous category on the basis of antagonistic effects may be done only if the determination is supported by sufficient data.

A.05 Bridging Principles for the Classification of Mixtures Where Test Data Are Not Available for the Complete Mixture

A.05.1 Where the mixture itself has not been tested to determine its toxicity, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data shall be used in accordance with the following bridging principles, subject to any specific provisions for mixtures for each hazard class. These principles ensure that the classification process uses the available data to the greatest extent possible in characterizing the hazards of the mixture.

A.05.1.1 Dilution.

For mixtures classified in accordance with A.1 through A.10 of this Appendix, if a tested mixture is diluted with a solvent that has an equivalent or lower toxicity classification than the least toxic original ingredient, and which is not expected to affect the toxicity of other ingredients, then:
(a) The new diluted mixture shall be classified as equivalent to the original tested mixture; or
(b) For classification of acute toxicity in accordance with A.1 of this Appendix, paragraph A.1.3.6 (the additivity formula) shall be applied.

A.05.1.2 Batching.

For mixtures classified in accordance with A.1 through A.10 of this Appendix, the toxicity of a tested production batch of a mixture can be assumed to be substantially equivalent to that of another untested production batch of the same mixture, when produced by or under the control of the same chemical manufacturer, unless there is reason to believe that there is significant variation such that the toxicity of the untested batch has changed. If the latter occurs, a new classification is necessary.

A.05.1.3 Concentration of mixtures.

For mixtures classified in accordance with A.1, A.2, A.3, A.8, A.9, or A.10 of this Appendix, if a tested mixture is classified in Category 1, and the concentration of the ingredients of the tested mixture that are in Category 1 is increased, the resulting untested mixture shall be classified in Category 1.

A.05.1.4 Interpolation within one toxicity category.

For mixtures classified in accordance with A.1, A.2, A.3, A.8, A.9, or A.10 of this Appendix, for three mixtures (A, B and C) with identical ingredients, where mixtures A and B have been tested and are in the same toxicity category, and where untested mixture C has the same toxicologically active ingredients as mixtures A and B but has concentrations of toxicologically active ingredients intermediate to the concentrations in mixtures A and B, then mixture C is assumed to be in the same toxicity category as A and B.

A.0.5.1.5 Substantially similar mixtures.

For mixtures classified in accordance with A.1 through A.10 of this Appendix, given the following set of conditions:
(a) Where there are two mixtures:
(i) A + B;
(ii) C + B;
(b) The concentration of ingredient B is essentially the same in both mixtures;
(c) The concentration of ingredient A in mixture (i) equals that of ingredient C in mixture (ii);
(d) And data on toxicity for A and C are available and substantially equivalent; i.e., they are in the same hazard category and are not expected to affect the toxicity of B; then
If mixture (i) or (ii) is already classified based on test data, the other mixture can be assigned the same hazard category.

A.0.5.1.6 Aerosols.

For mixtures classified in accordance with A.1, A.2, A.3, A.4, A.8, A.9 or A.10 of this Appendix, an aerosol form of a mixture shall be classified in the same hazard category as the tested, non-aerosolized form of the mixture, provided the added propellant does not affect the toxicity of the mixture when spraying.

A.1 ACUTE TOXICITY

A.1.1 Definition

Acute toxicity refers to those adverse effects occurring following oral or dermal administration of a single dose of a substance, or multiple doses within 24 hours, or an inhalation exposure of 4 hours.

A.1.2 Classification Criteria for Substances

A.1.2.1 Substances can be allocated to one of four toxicity categories based on acute toxicity by the oral, dermal or inhalation route according to the numeric cut-off criteria as shown in Table A.1.1. Acute toxicity values are expressed as (approximate) LD₅₀ (oral, dermal) or LC₅₀ (inhalation) values or as acute toxicity estimates (ATE). See the footnotes following Table A.1.1 for further explanation on the application of these values.

| TABLE A.1.1—ACUTE TOXICITY HAZARD CATEGORIES AND ACUTE TOXICITY ESTIMATE (ATE) VALUES DEFINING THE RESPECTIVE CATEGORIES |
|--|-----------------|-----------------|-----------------|-----------------|
| Exposure route | Category 1 | Category 2 | Category 3 | Category 4 |
| Oral (mg/kg bodyweight) see: Note (a), Note (b) | ≤5 (<5 and ≤50) | >50 and ≤300 | >50 and ≤300 | >500 and ≤1000 |
| Dermal (mg/kg bodyweight) see: Note (a), Note (b) | ≤5 (<50 and ≤200) | >200 and ≤1000 | >2000 and ≤2000 | >2500 and ≤25000 |
| Inhalation—Gases (ppm) see: Note (a), Note (b), Note (c) | ≤100 (100 and ≤500) | >500 and ≤2500 | >2500 and ≤25000 | >25000 |
| Inhalation—Vapors (mg/l) see: Note (a), Note (b), Note (c), Note (d) | ≤0.5 (0.5 and ≤2.0) | >2.0 and ≤10.0 | >10.0 and ≤20.0 | >10.0 and ≤20.0 |
| Inhalation—Dusts and Mists (mg/l) see: Note (a), Note (b), Note (c) | ≤0.5 (0.05 and ≤0.5) | >0.5 and ≤1.0 | >1.0 and ≤5.0 | >1.0 and ≤5.0 |

Note: Gas concentrations are expressed in parts per million per volume (ppm).

Notes to Table A.1.1:
(a) The acute toxicity estimate (ATE) for the classification of a substance is derived using the LD₅₀/LC₅₀ where available; (b) The acute toxicity estimate (ATE) for the classification of a substance or ingredient in a mixture is derived using:
(i) the LD₅₀/LC₅₀ where available. Otherwise;
(ii) the appropriate conversion value from Table 1.2 that relates to the results of a range test, or
(iii) the appropriate conversion value from Table 1.2 that relates to a classification category;
(c) Inhalation cut-off values in the table are based on 4 hour testing exposure. Conversion of existing inhalation toxicity data which has been generated according to 1 hour exposure is achieved by dividing by a factor of 2 for gases and vapors and 4 for dusts and mists.
A.1.3.2 Classification of mixtures for acute toxicity may be carried out for each route of exposure, but is only required for one route of exposure as long as this route is followed (estimated or tested) for all ingredients and there is no relevant evidence to suggest acute toxicity by multiple routes of exposure. When there is relevant evidence of acute toxicity by multiple routes of exposure, classification is to be conducted for all appropriate routes of exposure. All available information shall be considered. The pictogram and signal word used shall reflect the most severe hazard category; and all relevant hazard statements shall be used.

A.1.3.3 For purposes of classifying the hazards of mixtures in the tiered approach:

(a) The "relevant ingredients" of a mixture are those which are present in concentrations ≥1% (weight/weight for solids, liquids, dusts, mists and vapors and volume/volume for gases). If there is reason to suspect that an ingredient present at a concentration <1% will affect classification of the mixture for acute toxicity, that ingredient shall also be considered relevant. Consideration of ingredients present at a concentration <1% is particularly important when classifying untested mixtures which contain ingredients that are classified in Category 1 and Category 2;

(b) Where a classified mixture is used as an ingredient of another mixture, the actual or derived acute toxicity estimate (ATE) for that mixture is used when calculating the classification of the new mixture using the formulas in A.1.3.6.1 and A.1.3.6.2.4.

(c) If the converted acute toxicity point estimates for all ingredients of a mixture are within the same category, then the mixture should be classified in that category.

(d) When only range data (or acute toxicity hazard category information) are available for ingredients in a mixture, they may be converted to point estimates in accordance with Table A.1.2 when calculating the classification of the new mixture using the formulas in A.1.3.6.1 and A.1.3.6.2.4.

A.1.3.4 Classification of Mixtures Where Acute Toxicity Test Data Are Available for the Complete Mixture

Where the mixture itself has been tested to determine its acute toxicity, it is classified according to the same criteria as those used for substances, presented in Table A.1.1. If test data for the mixture are not available, the procedures presented below must be followed.

A.1.3.5 Classification of Mixtures Where Acute Toxicity Test Data Are Not Available for the Complete Mixture: Bridging Principles

Figure A.1.1: Tiered approach to classification of mixtures for acute toxicity

<table>
<thead>
<tr>
<th>Test data on the mixture as a whole</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient data available on similar mixtures to estimate classification hazards</td>
<td>Yes</td>
<td>Apply bridging principles in A.1.3.5</td>
</tr>
<tr>
<td>Available data for all ingredients</td>
<td>Yes</td>
<td>Apply formula in A.1.3.6.1</td>
</tr>
<tr>
<td>Other data available to estimate conversion values for classification</td>
<td>Yes</td>
<td>Apply formula in A.1.3.6.1</td>
</tr>
<tr>
<td>Convey hazards of the known ingredients</td>
<td></td>
<td>Apply formula in A.1.3.6.1 (unknown ingredients ≤ 10%) or Apply formula in A.1.3.6.2.3 (unknown ingredients > 10%)</td>
</tr>
</tbody>
</table>
A.1.3.5.1 Where the mixture itself has not been tested to determine its acute toxicity, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data will be used in accordance with the following bridging principles as found in paragraph A.0.5 of this Appendix: Dilution, Ratification, Concentration of mixtures, Interpolation within one toxicity category, Substantially similar mixtures, and Aerosols.

A.1.3.6 Classification of Mixtures Based on Ingredients of the Mixture (Additivity Formula)

A.1.3.6.1 Data available for all ingredients.

The acute toxicity estimate (ATE) of ingredients is considered as follows:

(a) Include ingredients with a known acute toxicity, which fall into any of the acute toxicity categories, or have an oral or dermal LD₅₀ greater than 2000 but less than or equal to 5000 mg/kg body weight (or the equivalent dose for inhalation);

(b) Ignore ingredients that are presumed not acutely toxic (e.g., water, sugar);

(c) Ignore ingredients if the data available are from a limit dose test (at the upper threshold for Category 4 for the appropriate route of exposure as provided in Table A.1.1) and do not show acute toxicity.

In ingredients that fall within the scope of this paragraph are considered to be ingredients with a known acute toxicity estimate (ATE). See note (b) to Table A.1.1 and paragraph A.1.3.3 for appropriate application of available data to the equation below, and paragraph A.1.3.6.2.4.

The ATE of the mixture is determined by calculation from the ATE values for all relevant ingredients according to the following formula below for oral, dermal or inhalation toxicity:

$$\frac{100}{ATE_{mix}} = \sum \frac{Ci}{ATE_{i}}$$

Where:

- Ci = concentration of ingredient i
- n = ingredients and i is running from 1 to n
- ATE = acute toxicity estimate of ingredient i.

A.1.3.6.2 Data are not available for one or more ingredients of the mixture.

A.1.3.6.2.1 Where an ATE is not available for an individual ingredient of the mixture, but available information provides a derived conversion value, the formula in A.1.3.6.1 may be applied. This information may include evaluation of:

(a) Extrapolation between oral, dermal and inhalation acute toxicity estimates. Such an evaluation requires appropriate pharmacodynamic and pharmacokinetic data;

(b) Evidence from human exposure that indicates toxic effects but does not provide lethal dose data;

(c) Evidence from any other toxicity tests/assays available on the substance that indicates toxic effects but does not necessarily provide lethal dose data; or

(d) Data from closely analogous substances using structure/activity relationships.

A.1.3.6.2.2 This approach requires substantial supplemental technical information, and a highly trained and experienced expert, to reliably estimate acute toxicity. If sufficient information is not available to reliably estimate acute toxicity, proceed to the provisions of A.1.3.6.2.3.

A.1.3.6.2.3 In the event that an ingredient with unknown acute toxicity is used in a mixture at a concentration ≥1%, and the mixture has not been classified based on testing of the mixture as a whole, the mixture cannot be attributed a definitive acute toxicity estimate. In this situation the mixture is classified based on the known ingredients only. (Note: A statement that ≥ percent of the mixture consists of ingredient(s) of unknown toxicity is required on the label and safety data sheet in such cases; see Appendix C to this section, Allocation of Label Elements and Appendix D to this section, Safety Data Sheets.)

Where an ingredient with unknown acute toxicity is used in a mixture at a concentration ≥1%, and the mixture is not classified based on testing of the mixture as a whole, a statement that ≥% of the mixture consists of ingredient(s) of unknown acute toxicity is required on the label and safety data sheet in such cases; see Appendix C to this section, Allocation of Label Elements and Appendix D to this section, Safety Data Sheets.)

A.1.3.6.2.4 If the total concentration of the relevant ingredient(s) with unknown acute toxicity is ≤10%, then the formula presented in A.1.3.6.1 must be used. If the total concentration of the relevant ingredient(s) with unknown acute toxicity is >10%, the formula presented in A.1.3.6.1 is corrected to adjust for the percentage of the unknown ingredient(s) as follows:

$$\frac{100}{ATE_{mix}} = \sum \frac{Ci}{ATE_{i}} \text{ if } \sum Ci > 100$$

| TABLE A.1.2—CONVERSION FROM EXPERIMENTALLY OBTAINED ACUTE TOXICITY RANGE VALUES (OR ACUTE TOXICITY HAZARD CATEGORIES) TO ACUTE TOXICITY POINT ESTIMATES FOR USE IN THE FORMULAS FOR THE CLASSIFICATION OF MIXTURES |
|---------------------------------|---------------------------------|-----------------|
| Exposure routes | Classification category or experimentally obtained acute toxicity range estimate | Converted acute toxicity point estimate |
| Oral (mg/kg bodyweight) | 0 < Category 1 ≤ 5 | 0.5 |
| | 5 < Category 2 ≤ 50 | 5 |
| | ≤ 500 | 100 |
| | 300 < Category 4 ≤ 2000 | 500 |
| Dermal (mg/kg bodyweight) | 0 < Category 1 ≤ 50 | 5 |
| | 50 < Category 2 ≤ 500 | 50 |
| | 200 < Category 3 ≤ 1000 | 300 |
| | 1000 < Category 4 ≤ 2000 | 1100 |
| Gases (ppmV) | 0 < Category 1 ≤ 100 | 10 |
| | 100 < Category 2 ≤ 500 | 100 |
| | 500 < Category 3 ≤ 2500 | 700 |
| | 2500 < Category 4 ≤ 20000 | 4500 |
| Vapors (mg/l) | 0 < Category 1 ≤ 0.5 | 0.05 |
| | 0.5 < Category 2 ≤ 2.0 | 0.05 |
| | 2.0 < Category 3 ≤ 10.0 | 3 |
| | 10.0 < Category 4 ≤ 20.0 | 11 |
| Dust/mist (mg/l) | 0 < Category 1 ≤ 0.05 | 0.005 |
| | 0.05 < Category 2 ≤ 0.5 | 0.05 |
| | 0.5 < Category 3 ≤ 1.0 | 0.5 |
| | 1.0 < Category 4 ≤ 5.0 | 1.5 |

Table: Gas concentrations are expressed in parts per million per volume (ppmV).

A.2 SKIN CORROSION/IRRITATION

A.2.1 Definitions and General Considerations

A.2.1.1 Skin corrosion is the production of irreversible damage to the skin; namely, visible necrosis through the epidermis and into the dermis, following the application of a test substance for up to 4 hours. Corrosive reactions are typified by ulcers, bleeding, bloody scabs, and, by the end of observation at 14 days, by discoloration due to blanching of the skin, complete areas of alopecia, and scars. Histopathology should be considered to evaluate questionable lesions.
Skin irritation is the production of reversible damage to the skin following the application of a test substance for up to 4 hours.

A.2.2.1 Corrosion

A corrosive substance is a chemical that produces destruction of skin tissue, namely, visible necrosis through the epidermis and into the dermis, in at least 1 of 3 tested animals after exposure up to 4-hour duration. Corrosive reactions are typified by ulcers, bleeding, bloody scabs, and, by the end of observation at 14 days, by discoloration due to blanching of the skin, complete areas of alopecia and scars. Histopathology should be considered to discern questionable lesions.

A.2.2.1.2 Three sub-categories of Category 1 are provided in Table A.2.1, all of which shall be regulated as Category 1.

<table>
<thead>
<tr>
<th>Category 1: corrosive</th>
<th>Corrosive sub-categories</th>
<th>Corrosive in ≥1 of 3 animals</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>≥3 min</td>
<td>≤1 h.</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>>3 min ≤1 h</td>
<td>≤14 days.</td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>>1 h ≤4 h</td>
<td>≤14 days.</td>
<td></td>
</tr>
</tbody>
</table>

A.2.2.2 Irritation

A.2.2.2.1 A single irritant category (Category 2) is presented in the Table A.2.2. The major criterion for the irritant category is that at least 2 tested animals have a mean score of ≥2.3 ≤4.0.

<table>
<thead>
<tr>
<th>Irritant (Category 2)</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Mean value of ≥2.3 ≤4.0 for erythema/eschar or for edema in at least 2 of 3 tested animals from gradings at 24, 48, and 72 hours after patch removal or, if reactions are delayed, from grades on 3 consecutive days after the onset of skin reactions; or (2) Inflammation that persists to the end of the observation period normally 14 days in at least 2 animals, particularly taking into account alopecia (limited area), hyperkeratosis, hyperplasia, and scaling; or</td>
<td></td>
</tr>
</tbody>
</table>

A.2.2.2.2 Animal irritant responses within a test can be quite variable, as they are with corrosion. A separate irritant criterion accommodates cases when there is a significant irritant response but less than the mean score criteria for a positive test. For example, a substance might be designated as an irritant if at least 1 of 3 tested animals shows a very elevated mean score throughout the study, including lesions persisting at the end of an observation period of normally 14 days. Other responses could also fulfill this criterion. However, it should be ascertained that the responses are the result of chemical exposure. Addition of this criterion increases the sensitivity of the classification system.

A.2.2.2.3 Reversibility of skin lesions is another consideration in evaluating irritant responses. When inflammation persists to the end of the observation period in 2 or more test animals, taking into consideration alopecia (limited area), hyperkeratosis, hyperplasia and scaling, then a chemical should be considered to be an irritant.

A.2.3 Classification Criteria for Substances Using Other Data Elements

A.2.3.1 Existing human and animal data including information from single or repeated exposure should be the first line of analysis, as they give information directly relevant to effects on the skin. If a substance is highly toxic by the dermal route, a skin corrosion/irritation study may not be practicable since the amount of test substance to be applied would considerably exceed the toxic dose and, consequently, would result in the death of the animals. When observations are made of skin corrosion/irritation in acute toxicity studies and are observed up through the limit dose, these data may be used for classification provided that the dilutions used and species tested are equivalent. In vitro alternatives that have been scientifically validated should be utilized to make classification decisions. Solid substances (powders) may become corrosive or irritant when moistened or in contact with moist skin or mucous membranes. Likewise, pH extremes like ≤2 and ≥11.5 may indicate skin effects, especially when associated with significant buffering capacity. Generally, such substances are expected to produce significant effects on the skin. In the absence of any other information, a substance is considered corrosive (Skin Category 1) if it has a pH ≤2 or a pH ≥11.5. However, if consideration of alkaline/sulfuric acid reserve suggests the substance or mixture may not be corrosive despite the low or high pH value, then further evaluation may be necessary. In some cases enough information may be available from structurally related compounds to make classification decisions.

A.2.3.2 A tiered approach to the evaluation of initial information shall be used (Figure A.2.1) recognizing that all elements may not be relevant in certain cases.

A.2.3.3 The tiered approach explains how to organize information on a substance and to make a weight-of-evidence decision about hazard assessment and hazard classification.

A.2.3.4 All the above information that is available on a substance shall be evaluated. Although information might be gained from the evaluation of single parameters within a tier, there is merit in considering the totality of existing information and making an overall weight of evidence determination. This is especially true when there is information available on some but not all parameters. Emphasis shall be placed upon existing human experience and data, followed by animal experience and testing data, followed by other sources of information, but case-by-case determinations are necessary.
1910 OSHA GUIDE

Figure A.2.1: Tiered evaluation of skin corrosion and irritation potential

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameter</th>
<th>Finding</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Existing human or animal data<sup>1</sup></td>
<td>→ Skin corrosive</td>
<td>→ Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Not corrosive or no data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>Existing human or animal data<sup>1</sup></td>
<td>→ Skin irritant</td>
<td>→ Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Not an irritant or no data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c</td>
<td>Existing human or animal data<sup>1</sup></td>
<td>→ Not a skin corrosive or skin irritant</td>
<td>→ Not classified</td>
</tr>
<tr>
<td></td>
<td>No/Insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td>Other, existing skin data in animals<sup>3</sup></td>
<td>→ Skin corrosive or Skin irritant</td>
<td>→ Category 1<sup>2</sup> or Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No/Insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td>Existing skin corrosive ex vivo / in vitro data<sup>4</sup></td>
<td>→ Positive: Skin corrosive</td>
<td>→ Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Not corrosive or no data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existing skin irritation ex vivo / in vitro data<sup>4</sup></td>
<td>→ Positive: Skin irritant</td>
<td>→ Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Not a skin corrosive or skin irritant<sup>5</sup></td>
<td></td>
<td>Not classified</td>
</tr>
<tr>
<td></td>
<td>No/Insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td>pH-Based assessment (with consideration of buffering capacity of the chemical, or no buffering capacity data)<sup>5</sup></td>
<td>→ pH ≤ 2 or ≥ 11.5</td>
<td>→ Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Not a pH extreme, No pH data or extreme pH with low/no buffering capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:</td>
<td>Validated Structure/Activity Relationship (SAR) models</td>
<td>→ Skin corrosive</td>
<td>→ Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Skin irritant</td>
<td></td>
<td>Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No/Insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:</td>
<td>Consideration of the total Weight of Evidence<sup>6</sup></td>
<td>→ Skin corrosive</td>
<td>→ Category 1<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Skin irritant</td>
<td></td>
<td>Category 2<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>No concern based on consideration of the sum of available data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:</td>
<td>Not Classified</td>
<td></td>
<td>Not classified</td>
</tr>
</tbody>
</table>

Notes to Figure A.2.1:

1. Evidence of existing human or animal data may be derived from single or repeated exposure(s) in occupational, consumer, transportation, or emergency response scenarios; from ethically-conducted human clinical studies; or from purposely-generated data from animal studies conducted according to scientifically validated test methods (at present, there is no internationally accepted test method for human skin irritation testing).

2. Classify in the appropriate harmonized category, as shown in Tables A.2.1 and A.2.2.
Pre-existing animal data (e.g., from an acute dermal toxicity test or a sensitisation test) should be carefully reviewed to determine if sufficient skin corrosion/irritation evidence is available through other, similar information. For example, classification/categorization may be done on the basis of whether a chemical has or has not produced any skin irritation in an acute dermal toxicity test in animals at the limit dose, or produces very toxic effects in an acute dermal toxicity test in animals. In the latter case, the chemical would be classified as being very hazardous by the dermal route for acute toxicity, and it would be moot whether the chemical is also irritating or corrosive on the skin. It should be kept in mind in evaluating acute dermal toxicity information that the reporting of dermal lesions may be incomplete, testing and observations may be made on a species other than the rabbit, and species may differ in sensitivity in their responses.

Evidence from studies using scientifically validated protocols with isolated human/animal tissues or other, non-tissue-based, though scientifically validated, protocols should be assessed. Examples of scientifically validated test methods for skin corrosion include OECD TG 430 (Transcutaneous Electrical Resistance Test (TER), 431 (Human Skin Model Test), and 433 (Membrane Barrier Test Method). OECD TG 439 (Reconstructed Human Epidermis Test Method) is a scientifically validated in vitro test method for skin irritation.

Measurement of pH alone may be adequate, but assessment of acid or alkali reserve (buffering capacity) would be preferable. Presently, there is no scientifically validated and internationally accepted method for assessing this parameter.

All information that is available on a chemical should be considered and an overall determination made on the total weight of evidence. This is especially true when there is conflict in information available on some parameters. Professional judgment should be exercised in making such a determination.

BILLING CODE 4510-26-C
A.2.4 Classification Criteria for Mixtures
A.2.4.1 Classification of Mixtures When Data Are Available for the Complete Mixture
A.2.4.1.1 The mixture shall be classified using the criteria for substances (See A.2.3).

A.2.4.2 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles
A.2.4.2.1 Where the mixture itself has not been tested to determine its skin corrosion/irritation, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data will be used in accordance with the following bridging principles, as found in paragraph A.0.5 of this Appendix: Dilution, Batching. Concentration of mixtures, Interpolation within one toxicity category, Substantially similar mixtures, and Aerosols.

A.2.4.3 Classification of Mixtures When Data Are Available for All Ingredients or Only for Some Ingredients of the Mixture
A.2.4.3.1 For purposes of classifying the skin corrosion/irritation hazards of mixtures in the tiered approach:

The "relevant ingredients" of a mixture are those which are present in concentrations ≥1% (weight/weight for solids, liquids, dusts, mists and vapors and volume/volume for gases.) If the classifier has reason to suspect that an ingredient present at a concentration <1% will affect classification of the mixture for skin corrosion/irritation, that ingredient shall also be considered relevant.

A.2.4.3.2 In general, the approach to classification of mixtures as irritant or corrosive to skin when data are available on the ingredients, but not on the mixture as a whole, is based on the theory of additivity, such that each corrosive or irritant ingredient contributes to the overall irritant or corrosive properties of the mixture in proportion to its potency and concentration. A weighting factor of 10 is used for corrosive ingredients when they are present at a concentration below the concentration limit for classification with Category 1, but are at a concentration that will contribute to the classification of the mixture as an irritant. The mixture is classified as corrosive or irritant when the sum of the concentrations of such ingredients exceeds a cut-off value/concentration limit. A.2.4.3.3 Table A.2.3 below provides the cut-off value/concentration limits to be used to determine if the mixture is considered to be an irritant or a corrosive to the skin.
TABLE A.2.3—CONCENTRATION OF INGREDIENTS OF A MIXTURE CLASSIFIED AS SKIN CATEGORY 1 OR 2 THAT WOULD TRIGGER

(Category 1 or 2)

<table>
<thead>
<tr>
<th>Sum of ingredients classified as:</th>
<th>Concentration triggering classification of a mixture as:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Skin corrosive</td>
</tr>
<tr>
<td>Skin Category 1</td>
<td>≥5%</td>
</tr>
<tr>
<td>Skin Category 2</td>
<td>—</td>
</tr>
<tr>
<td>(10 x Skin Category 1) + Skin</td>
<td>—</td>
</tr>
<tr>
<td>Category 2</td>
<td></td>
</tr>
</tbody>
</table>

TABLE A.2.4—CONCENTRATION OF INGREDIENTS OF A MIXTURE FOR WHICH THE ADDITIVITY APPROACH DOES NOT APPLY, THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURE AS HAZARDOUS TO SKIN

<table>
<thead>
<tr>
<th>Ingredient:</th>
<th>Concentration:</th>
<th>Mixture classified as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid with pH ≤ 2</td>
<td>≥1%</td>
<td>Category 1.</td>
</tr>
<tr>
<td>Base with pH ≥11.5</td>
<td>≥1%</td>
<td>Category 1.</td>
</tr>
<tr>
<td>Other corrosive (Category 1)</td>
<td></td>
<td>Category 1.</td>
</tr>
<tr>
<td>ingredients for which additivity does not apply</td>
<td></td>
<td>Category 1.</td>
</tr>
<tr>
<td>Other irritant (Category 2)</td>
<td>≥3%</td>
<td>Category 2.</td>
</tr>
<tr>
<td>ingredients for which additivity does not apply, including acids and bases</td>
<td></td>
<td>Category 2.</td>
</tr>
</tbody>
</table>

A.3 SERIOUS EYE DAMAGE/EYE IRRITATION

A.3.1 Definitions and General Considerations

A.3.1.1 Serious eye damage is the production of tissue damage in the eye, or serious physical decay of vision, following application of a test substance to the anterior surface of the eye, which is not fully reversible within 21 days of application.

Eye irritation is the production of changes in the eye following the application of test substance to the anterior surface of the eye, which are fully reversible within 21 days of application.

A.3.1.2 Serious eye damage/eye irritation shall be classified using a tiered approach as detailed in Figure A.3.1. Emphasis shall be placed upon existing human data (See A.0.2.6), followed by animal data, followed by other sources of information. Classification results directly when the data satisfy the criteria in this section. In case the criteria cannot be directly applied, classification of a substance or a mixture is made on the basis of the total weight of evidence (See A.0.3.1). This means that all available information bearing on the determination of serious eye damage/eye irritation is considered together, including the results of appropriate scientifically validated in vitro tests, relevant animal data, and human data such as epidemiological and clinical studies and well-documented case reports and observations.

A.3.2 Classification Criteria for Substances Using Animal Test Data

A.3.2.1 Irreversible effects on the eye/serious damage to eyes (Category 1).

A single hazard category is provided in Table A.3.1, for substances that have the potential to seriously damage the eyes. Category 1, irreversible effects on the eye, includes the criteria listed below. These observations include animals with grade 4 corneal lesions and other severe reactions (e.g., destruction of cornea) observed at any time during the test, as well as persistent corneal opacity, discoloredation of the cornea by a dye substance, adhesion, pannus, and interference with the function of the iris or other effects that impair sight. In this context, persistent lesions are considered those which are not fully reversible within an observation period of normally 21 days. Category 1 also contains substances fulfilling the criteria of corneal opacity ≥3 and/or iritis >1.5 detected in a Draize eye test with rabbits, because severe lesions like these usually do not reverse within a 21-day observation period.

A.3.3 Classification Criteria for Substances Using Other Data Elements

A.3.3.1 Existing human and animal data should be the first line of analysis, as they give information directly relevant to effects on the eye. Possible skin corrosion shall be evaluated prior to consideration of serious eye damage/eye irritation in order to avoid testing for local effects on eyes with skin corrosive substances. In vitro alternatives that have been scientifically validated and accepted shall be used to make classification decisions. Likewise, pH extremes like ≤2 and ≥11.5, may indicate serious eye damage, especially when associated with significant buffering capacity. Generally, such substances are expected to produce significant effects on the eyes. In the absence of any other information, a mixture/substance is considered to cause serious eye damage (Eye Category 1) if it has a pH ≤2 or ≥11.5. However, if consideration of acid/aline reserve suggests the substance may not have the potential to cause serious eye damage despite the low or high pH value, then further evaluation may be necessary. In some cases, enough information may be available from structurally related compounds to make classification decisions.

A.3.3.2 A tiered approach to the evaluation of initial information shall be used where applicable, recognizing that all elements may not be relevant in certain cases (Figure A.3.1).

A.3.3.3 The tiered approach explains how to organize existing information on a substance and to make a weight-of-evidence decision, where appropriate, about hazard assessment and hazard classification.

A.3.3.4 All the above information that is available on a substance shall be evaluated. Although information might be gained from the evaluation of single parameters within a tier, consideration should be given to the totality of existing information and making an overall weight-of-evidence determination. This is especially true when there is conflict in information available on some parameters.

BILLING CODE 4510-26-P

HAZARD COMMUNICATION—17

10/12
Figure A.3.1 Evaluation strategy for serious eye damage and eye irritation
(See also Figure A.2.1)

<table>
<thead>
<tr>
<th>Step</th>
<th>Parameter</th>
<th>Finding</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Existing human or animal data, eye(^1)</td>
<td>→ Serious Eye Damage</td>
<td>→ Category 1(^2)</td>
</tr>
<tr>
<td></td>
<td>No/insufficient data or unknown</td>
<td>→ Eye Irritant</td>
<td>→ Category 2(^2)</td>
</tr>
<tr>
<td>1b</td>
<td>Existing human or animal data, skin corrosion</td>
<td>→ Skin corrosive</td>
<td>→ Category 1(^2)</td>
</tr>
<tr>
<td></td>
<td>No/insufficient data or unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c</td>
<td>Existing human or animal data, eye(^1)</td>
<td>→ Existing data that show that substance does not cause serious eye damage or eye irritation</td>
<td>→ Not Classified</td>
</tr>
<tr>
<td></td>
<td>No/insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Other, existing skin/eye data in animals(^3)</td>
<td>→ Yes; existing data that show that substance may cause serious eye damage or eye irritation</td>
<td>→ Category 1 or Category 2(^2)</td>
</tr>
<tr>
<td></td>
<td>No/insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Existing ex vivo / in vitro data(^4)</td>
<td>→ Positive: serious eye damage</td>
<td>→ Category 1(^2)</td>
</tr>
<tr>
<td></td>
<td>→ Positive: eye irritant</td>
<td>→ Category 2(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No/insufficient data / negative response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>pH-Based assessment (with consideration of buffering capacity of the chemical, or no buffering capacity(^5))</td>
<td>→ pH (\leq 2) or (\geq 11.5)</td>
<td>→ Category 1(^2)</td>
</tr>
<tr>
<td></td>
<td>Not a pH extreme, no pH data, or extreme pH with low/no buffering capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Validated structure/activity relationship (SAR) models</td>
<td>→ Severe damage to eyes</td>
<td>→ Category 1(^2)</td>
</tr>
<tr>
<td></td>
<td>→ Eye irritant</td>
<td>→ Category 2(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Skin Corrosive</td>
<td>→ Category 1(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No/insufficient data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Consideration of the total weight of evidence(^6)</td>
<td>→ Serious eye damage</td>
<td>→ Category 1(^2)</td>
</tr>
<tr>
<td></td>
<td>→ Eye irritant</td>
<td>→ Category 2(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No concern based on consideration of the sum of available data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Not Classified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes to Figure A.3.1:

1. Evidence of existing human or animal data may be derived from single or repeated exposure(s) in occupational, consumer, transportation, or emergency response scenarios; from ethically-conducted human clinical studies; or from purposely-generated data from animal studies conducted according to scientifically validated test methods. At present, there are no internationally accepted test methods for human skin or eye irritation testing.

2. Classify in the appropriate harmonized category, as shown in Tables A.3.1 and A.3.2.
Pre-existing animal data should be carefully reviewed to determine if sufficient skin or eye corrosion/irritation evidence is available through other, similar information.

Evidence from studies using scientifically validated protocols with isolated human/animal tissues or other, non-tissue-based, though scientifically validated, protocols should be assessed. Examples of scientifically validated test methods for identifying eye corrosives and severe irritants (i.e., Serious Eye Damage) include OECD TG 437 (Bacterial Corneal Opacity and Permeability (BCOP)) and TG 438 (Isolated Chicken Eye). Positive test results from a scientifically validated in vitro test for skin corrosion would likely also lead to a conclusion to classify or cause Serious Eye Damage.

Measurement of pH alone may be adequate, but assessment of acid or alkali reserve (buffering capacity) would be preferable.

All information that is available on a chemical should be considered and an overall determination made on the total weight of evidence. This is especially true when there is conflict in information available on some parameters. The weight of evidence, including information on skin irritation, could lead to classification of eye irritation. It is recognized that not all skin irritants are eye irritants as well. Professional judgment should be exercised in making such a determination.

A.3.4.3.4 Particular care must be taken when classifying certain types of chemicals such as acids and bases, inorganic salts, aldehydes, phenols, and surfactants. The approach explained in A.3.4.3.1 and A.3.4.3.2 might not work given that many of such substances are corrosive or irritant at concentrations <1%. For mixtures containing strong acids or bases, the pH should be used as classification criteria (See A.3.4.1) since pH will be a better indicator of serious eye damage than the concentration limits of Table A.3.3.

A mixture containing corrosive or irritant ingredients that cannot be classified based on the additivity approach applied in Table A.3.3 due to chemical characteristics that make this approach unworkable, should be classified as Eye Category 1 if it contains ≥1% of a corrosive ingredient and as Eye Category 2 when it contains ≥3% of an Irritant Ingredient. Classification of mixtures with ingredients for which the approach in Table A.3.3 does not apply is summarized in Table A.3.4.

A.3.4.3.5 On occasion, reliable data may show that the reversible/irreversible eye effects of an ingredient will not be evident when present at a level above the generic cut-off values/concentration limits mentioned in Tables A.3.3 and A.3.4. In these cases the mixture could be classified according to those data (See also A.0.4.3 Use of cut-off values/concentration limits). On occasion, it is expected that the skin corrosion/irritation or the reversible/irreversible eye effects of an ingredient will not be evident when present at a level above the generic concentration/cut-off levels mentioned in Tables A.3.3 and A.3.4. Testing of the mixture may be considered. In those cases, the tiered weight of evidence strategy should be applied as referenced to in section A.3.3, Figure A.3.1 and explained in detail in this chapter.

A.3.4.3.6 If there are data showing that (an) ingredient(s) may be corrosive or irritant at a concentration of <1% (corrosive) or <3% (irritant), the mixture should be classified accordingly (See also paragraph A.0.4.3 Use of cut-off values/concentration limits).

| TABLE A.3.3—CONCENTRATION OF INGREDIENTS OF A MIXTURE CLASSIFIED AS SKIN CATEGORY 1 AND/OR EYE CATEGORY 1 OR 2 THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURES AS HAZARDOUS TO THE EYE |
|---|---|---|
| Concentration triggering classification of a mixture as: | Irreversible eye effects | Reversible eye effects |
| Sum of ingredients classified as: | Category 1 | Category 2 |
| Eye or Skin Category 1 | ≥3% | ≥1% but <3% |
| Eye Category 2 (10 x Eye Category 1) + Eye Category 2 | ≥10% | ≥10% |
| Skin Category 1 + Eye Category 1 | ≥3% | ≥1% but <3% |
1910 OSHA GUIDE

TABLE A.3.3—CONCENTRATION OF INGREDIENTS OF A MIXTURE CLASSIFIED AS SKIN CATEGORY 1 AND/OR EYE CATEGORY 1 OR 2 THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURES AS HAZARDOUS TO THE EYE, Continued

<table>
<thead>
<tr>
<th>Sum of ingredients classified as:</th>
<th>Concentration triggering classification of a mixture as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x (Skin Category 1 + Eye Category 1) + Eye Category 2</td>
<td>Irreversible eye effects</td>
</tr>
<tr>
<td></td>
<td>Category 1</td>
</tr>
<tr>
<td>≥10%</td>
<td></td>
</tr>
</tbody>
</table>

Note: A mixture may be classified as Eye Category 2B in cases when all relevant ingredients are classified as Eye Category 2B.

TABLE A.3.4—CONCENTRATION OF INGREDIENTS OF A MIXTURE FOR WHICH THE ADDITIVITY APPROACH DOES NOT APPLY, THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURE AS HAZARDOUS TO THE EYE

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
<th>Mixture classified as: Eye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid with pH ≤2</td>
<td>≥1%</td>
<td>Category 1</td>
</tr>
<tr>
<td>Base with pH ≥11.5</td>
<td>≥1%</td>
<td>Category 1</td>
</tr>
<tr>
<td>Other corrosive (Category 1) ingredients for which additivity does not apply</td>
<td>≥3%</td>
<td>Category 2</td>
</tr>
<tr>
<td>Other irritant (Category 2) ingredients for which additivity does not apply, including acids and bases</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.4 RESPIRATORY OR SKIN SENSITIZATION

A.4.1 Definitions and General Considerations

A.4.1.1 Respiratory sensitizer means a chemical that will lead to hypersensitivity of the airways following inhalation of the chemical. Skin sensitizer means a chemical that will lead to an allergic response following skin contact.

A.4.1.2 For the purpose of this chapter, sensitization includes two phases: the first phase is induction of specialized immunological memory in an individual by exposure to an allergen. The second phase is elicitation, i.e., production of a cell-mediated or antibody-mediated allergic response by exposure of a sensitized individual to an allergen.

A.4.1.3 For respiratory sensitization, the pattern of induction followed by elicitation phases is shared in common with skin sensitization. For skin sensitization, an induction phase is required in which the immune system learns to react; clinical symptoms can then arise when subsequent exposure is sufficient to elicit a visible skin reaction (elicitation phase). As a consequence, predictive tests usually follow this pattern in which there is an induction phase, the response to which is measured by a standardized elicitation phase, typically involving a patch test. The local lymph node assay is the exception, directly measuring the induction response. Evidence of skin sensitization in humans normally is assessed by a diagnostic patch test.

A.4.1.4 Usually, both skin and respiratory sensitization, lower levels are necessary for elicitation than are required for induction.

A.4.1.5 The hazard class "respiratory or skin sensitization" is differentiated into:

(a) Respiratory sensitization; and
(b) Skin sensitization.

A.4.2 Classification Criteria for Substances

A.4.2.1 Respiratory Sensitizers

A.4.2.1.1 Hazard Categories.

A.4.2.1.1.1 Effects seen in either humans or animals will normally justify classification in a weight of evidence approach for respiratory sensitizers. Substances may be allocated to one of the two sub-categories 1A or 1B using a weight of evidence approach in accordance with the criteria given in Table A.4.1 and on the basis of reliable and good quality evidence from human cases or epidemiological studies and/or observations from appropriate studies in experimental animals.

A.4.2.1.2 Where data are not sufficient for sub-categorization, respiratory sensitizers shall be classified in Category 1.

TABLE A.4.1—HAZARD CATEGORY AND SUB-CATEGORIES FOR RESPIRATORY SENSITIZERS

<table>
<thead>
<tr>
<th>Category 1</th>
<th>Respiratory sensitizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A substance is classified as a respiratory sensitizer.</td>
<td></td>
</tr>
<tr>
<td>(a) If there is evidence in humans that the substance can lead to specific respiratory hypersensitivity and/or</td>
<td></td>
</tr>
<tr>
<td>(b) If there are positive results from an appropriate animal test.</td>
<td></td>
</tr>
</tbody>
</table>

Substances showing a high frequency of occurrence in humans; or a probability of occurrence of a high sensitization rate in humans based on animal or other tests. Severity of reaction may also be considered.

Substances showing a low to moderate frequency of occurrence in humans; or a probability of occurrence of a low to moderate sensitization rate in humans based on animal or other tests. Severity of reaction may also be considered.

1 At this writing, recognized and validated animal models for the testing of respiratory hypersensitivity are not available. Under certain circumstances, data from animal studies may provide valuable information in a weight of evidence assessment.

A.4.2.1.2 Human evidence.

A.4.2.1.2.1 Evidence that a substance can lead to specific respiratory hypersensitivity will normally be based on human experience. In this context, hypersensitivity is normally seen as asthma, but other hypersensitivity reactions such as rhinitis/conjunctivitis and alveolitis are also considered. The condition will have the clinical character of an allergic reaction. However, immunological mechanisms do not have to be demonstrated.

A.4.2.1.2.2 When considering the human evidence, it is necessary that in addition to the evidence from the cases, the following be taken into account:

(a) The size of the population exposed;
(b) The extent of exposure.

A.4.2.1.2.3 The evidence referred to above could be:

(a) Clinical history and data from appropriate lung function tests related to exposure to the substance, confirmed by other supportive evidence which may include:
 (i) In vivo immunological test (e.g., skin prick test);
 (ii) In vitro immunological test (e.g., serological analysis);
 (iii) Studies that may indicate other specific hypersensitivity reactions where immunological mechanisms of action have not been proven, e.g., repeated low-level irritation, pharmacologically mediated effects;
 (iv) A chemical structure related to substances known to cause respiratory hypersensitivity;

(b) Data from positive bronchial challenge tests with the substance conducted according to accepted guidelines for the determination of a specific hypersensitivity reaction.
A.4.2.1.2.4 Clinical history should include both medical and occupational history to determine a relationship between exposure to a specific substance and development of respiratory hypersensitivity. Relevant information includes aggravating factors both in the home and workplace, the onset and progress of the disease, family history and medical history of the patient in question. The medical history should also include a note of other allergic or airway disorders from childhood and smoking history.

A.4.2.1.2.5 The results of positive bronchial challenge tests are considered to provide sufficient evidence for classification on their own. It is, however, recognized that in practice many of the examinations listed above will already have been carried out.

A.4.2.1.3 Animal studies.

A.4.2.1.3.1 Data from appropriate animal studies may which may be indicative of the potential of a substance to cause sensitization by inhalation in humans may include:

- At this writing, recognized and validated animal models for the testing of respiratory hypersensitivity are not available. Under certain circumstances, data from animal studies may provide valuable information in a weight of evidence assessment.

- The mechanisms by which substances induce symptoms of asthma are not yet fully known. For preventive measures, these substances are considered respiratory sensitizers. However, if on the basis of the evidence, it can be demonstrated that these substances induce symptoms of asthma by irritation only in people with bronchial hyperactivity, they should not be considered as respiratory sensitizers.

(a) Measurements of immunoglobulin E (IgE) and other specific immunological parameters, for example in mice
(b) Specific pulmonary responses in guinea pigs.

A.4.2.2 Skin Sensitizers

A.4.2.2.1 Hazard categories.

A.4.2.2.1.1 Effects seen in either humans or animals will normally justify classification in a weight of evidence approach for skin sensitization. Substances may be allocated to one of the two sub-categories 1A or 1B using a weight of evidence approach in accordance with the criteria given in Table A.4.2 and on the basis of reliable and good quality evidence from human cases or epidemiological studies and/or observations from appropriate studies in experimental animals according to the guidance values provided in A.4.2.2.2.1 and A.4.2.2.3.2 for sub-category 1A and in A.4.2.2.2.2 and A.4.2.2.3.3 for sub-category 1B.

A.4.2.2.1.2 Where data are not sufficient for sub-classification, skin sensitizers shall be classified in Category 1.

| TABLE A.4.2—HAZARD CATEGORY AND SUB-CATEGORIES FOR SKIN SENSITIZERS |
|--------------------------|--------------------------|
| **Category 1** | **Skin sensitizer** |
| | A substance is classified as a skin sensitizer.
| | (a) if there is evidence in humans that the substance can lead to sensitization by skin contact in a substantial number of persons, or
| | (b) if there is positive results from an appropriate animal test.
| Sub-category 1A | Substances showing a high frequency of occurrence in humans and/or a high potency in animals can be presumed to have the potential to produce significant sensitization in humans. Severity of reaction may also be considered.
| Sub-category 1B | Substances showing a low to moderate frequency of occurrence in humans and/or a low to moderate potency in animals can be presumed to have the potential to produce sensitization in humans. Severity of reaction may also be considered.

A.4.2.2.2 Human evidence.

A.4.2.2.2.1 Human evidence for sub-category 1A may include:

- Positive responses at ≤500 μg/cm² (Human Repeat insult Patch Test (HRIT), Human Maximization Test (HMIT)—induction threshold);
- Diagnostic patch test data where there is a relatively high and substantial incidence of reactions in a defined population in relation to relatively low exposure;
- Other epidemiological evidence where there is a relatively high and substantial incidence of allergic contact dermatitis in relation to relatively low exposure.

A.4.2.2.2.2 Human evidence for sub-category 1B may include:

- Positive responses at ≤500 μg/cm² (HRIT, HMIT—induction threshold);
- Diagnostic patch test data where there is a relatively low but substantial incidence of reactions in a defined population in relation to relatively high exposure;
- Other epidemiological evidence where there is a relatively low but substantial incidence of allergic contact dermatitis in relation to relatively high exposure.

A.4.2.2.3 Animal studies

A.4.2.2.3.1 For Category 1, when an adjuvant type test method for skin sensitization is used, a response of at least 30% of the animals is considered as positive. For a non-adjuvant Guinea pig test method a response of at least 15% of the animals is considered positive. For Category 1, a stimulation index of three or more is considered a positive response in the local lymph node assay.

*Tests methods for skin sensitization are described in OECD Guideline 406 (the Guinea Pig Maximization test and the Buehler guinea pig test) and Guideline 429 (Local Lymph Node Assay). Other methods may be used provided that they are scientifically validated. The Mouse Ear Swelling Test (MEST), appears to be a reliable screening test to detect moderate to strong sensitizers, and can be used, in accordance with professional judgment, as a first stage in the assessment of skin sensitization potential.

A.4.2.2.3.2 Animal test results for sub-category 1A can include data with values indicated in Table A.4.3 below:

| TABLE A.4.3—ANIMAL TEST RESULTS FOR SUB-CATEGORY 1A |
|--------------------------|--------------------------|
| **Assay** | **Criteria** |
| Local lymph node assay | EC3 value ≥2%.
| Guinea pig maximization test | >30% responding at ≤0.1% intradermal induction dose or
| | >60% responding at >0.1% to ≤1% intradermal induction dose.
| Buehler assay | ≥15% responding at ≤0.2% topical induction dose or
| | >60% responding at >0.2% to ≤20% topical induction dose.

Note: EC3 refers to the estimated concentration of test chemical required to induce a stimulation index of 3 in the local lymph node assay.

A.4.2.2.3.3 Animal test results for sub-category 1B can include data with values indicated in Table A.4.4 below:

| TABLE A.4.4—ANIMAL TEST RESULTS FOR SUB-CATEGORY 1B |
|--------------------------|--------------------------|
| **Assay** | **Criteria** |
| Local lymph node assay | EC3 value ≥2%.
| Guinea pig maximization test | >30% to ≤60% responding at >0.1% to ≤1% intradermal induction dose or
| | >30% responding at >1% intradermal induction dose.
| Buehler assay | ≥15% to <60% responding at >0.2% to ≤30% topical induction dose or
TABLE A.4.4—ANIMAL TEST RESULTS FOR SUB-CATEGORY 1B.

<table>
<thead>
<tr>
<th>Assay</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥15% responding at >20% topical induction dose.</td>
</tr>
</tbody>
</table>

Note: ECS refers to the estimated concentration of test chemical required to induce a simulant index of 3 in the local lymph node assay.

A.4.2.2.4.2 Specific considerations.
A.4.2.2.4.1 For classification of a substance, evidence shall include one or more of the following using a weight of evidence approach:

(a) Positive data from patch testing, normally obtained in more than one dermatology clinic;
(b) Epidemiological studies showing allergic contact dermatitis caused by the substance. Situations in which a high proportion of those exposed exhibit characteristic symptoms are to be looked at with special concern, even if the number of cases is small;
(c) Positive data from appropriate animal studies;
(d) Positive data from experimental studies in man (See paragraph A.0.2.6 of this Appendix);
(e) Well documented episodes of allergic contact dermatitis, normally obtained in more than one dermatology clinic;
(f) Severity of reaction.

A.4.2.2.4.2.2 Evidence from animal studies is usually much more reliable than evidence from human exposure. However, in cases where evidence is available from both sources, and there is conflict between the results, the quality and reliability of the evidence from both sources must be assessed in order to resolve the question of classification on a case-by-case basis. Normally, human data are not generated in controlled experiments with volunteers for the purpose of hazard classification but rather as part of risk assessment to confirm lack of effects seen in animal tests. Consequentially, positive human data on skin sensitization are usually derived from case-control or other, less defined studies. Evaluation of human data must, therefore, be carried out with caution as the frequency of cases reflect, in addition to the inherent properties of the substances, factors such as the exposure situation, bioavailability, individual predisposition and preventive measures taken. Negative human data should not normally be used to negate positive results from animal studies. For both animal and human data, consideration should be given to the impact of vehicle.

A.4.2.2.4.3 If none of the above-mentioned conditions are met, the substance need not be classified as a skin sensitizer. However, a combination of two or more indicators of skin sensitization, as listed below, may alter the decision. This shall be considered on a case-by-case basis.

(a) Isolated episodes of allergic contact dermatitis;
(b) Epidemiological studies of limited power, e.g., where chance, bias or confounders have not been ruled out fully with reasonable confidence;
(c) Data from animal tests, performed according to existing guidelines, which do not meet the criteria for a positive result described in A.4.2.2.3, but which are sufficiently close to the limit to be considered significant;
(d) Positive data from non-standard methods;
(e) Positive results from close structural analogues.

A.4.2.2.4.4 Immunological contact urticarias.

A.4.2.2.4.4.1 Substances meeting the criteria for classification as respiratory sensitizers may, in addition, cause immunological contact urticarias. Consideration shall be given to classifying these substances as skin sensitizer.

A.4.2.2.4.4.2 Substances which cause immunological contact urticaria without meeting the criteria for respiratory sensitizers shall be considered for classification as skin sensitizers.

A.4.2.2.4.4.3 There is no recognized animal model available to identify substances which cause immunological contact urticaria. Therefore, classification will normally be based on human evidence, similar to that for skin sensitization.

A.4.3 Classification Criteria for Mixtures

A.4.3.1 Classification of Mixtures When Data Are Available for the Complete Mixture

When reliable and good quality evidence, as described in the criteria for substances, from human experience or appropriate studies in experimental animals, is available for the mixture, then the mixture shall be classified by weight of evidence evaluation of these data. Care must be exercised in evaluating data on mixtures that the dose used does not render the results inconclusive.

A.4.3.2 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles

A.4.3.2.1 Where the mixture itself has not been tested to determine its sensitizing properties, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data will be used in accordance with the following agreed bridging principles as found in paragraph A.0.5 of this Appendix: Dilution, Batch size, Concentration of mixtures, Interpolation, Substantly similar mixtures, and Aerosols.

A.4.3.2.2 Classification of Mixtures When Data Are Available for All Ingredients or Only for Some Ingredients of the Mixture

The mixture shall be classified as a respiratory or skin sensitizer when at least one ingredient has been classified as a respiratory or skin sensitizer and is present at or above the appropriate cut-off value/concentration limit for the specific endpoint as shown in Table A.4.5.

TABLE A.4.5—CUT-OFF VALUES/CONCENTRATION LIMITS OF INGREDIENTS OF A MIXTURE CLASSIFIED AS EITHER RESPIRATORY SENSITIZERS OR SKIN SENSITIZERS THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURE

<table>
<thead>
<tr>
<th>Ingredient classified as:</th>
<th>Cut-off values/concentration limits triggering classification of a mixture as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Sensitizer Category 1</td>
<td>Solid/liquid</td>
</tr>
<tr>
<td>Respiratory Sensitizer Category 1</td>
<td>≥0.1%</td>
</tr>
<tr>
<td>Respiratory Sensitizer, Sub-category 1A</td>
<td>≥0.1%</td>
</tr>
<tr>
<td>Respiratory Sensitizer, Sub-category 1B</td>
<td>≥1.0%</td>
</tr>
<tr>
<td>Skin Sensitizer Category 1</td>
<td>—</td>
</tr>
<tr>
<td>Skin Sensitizer, Sub-category 1A</td>
<td>—</td>
</tr>
<tr>
<td>Skin Sensitizer, Sub-category 1B</td>
<td>—</td>
</tr>
</tbody>
</table>

A.5. GERM CELL MUTAGENICITY

A.5.1 Definitions and General Considerations

A.5.1.1 A mutation is defined as a permanent change in the amount or structure of the genetic material in a cell. The term mutation applies both to heritable genetic changes that may be manifested at the phenotypic level and to the underlying DNA modifications when known (including, for example, specific base pair changes and chromosomal translocations). The term mutagen and mutagenic will be used for agents giving rise to an increased occurrence of mutations in populations of cells and/or organisms.

A.5.1.2 The more general terms genotoxic and genotoxicity apply to agents or processes which alter the structure, information content, or segregation of DNA, including those which cause DNA damage by interfering with normal replication processes, or which in a non-physiological manner (temporarily) alter its replication. Genotoxicity test results are usually taken as indicators for mutagenic effects.

A.5.1.3 This hazard class is primarily concerned with chemicals that may cause mutations in the germ cells of humans that can be transmitted to the

HAZARD COMMUNICATION—22

10/12
progeny. However, mutagenicity/genotoxicity tests in vitro and in mammalian somatic cells in vivo are also considered in classifying substances and mixtures within this hazard class.

A.5.2 Classification Criteria for Substances

A.5.2.1 The classification system provides for two different categories of germ cell mutagens to accommodate the weight of evidence available. The two-category system is described in the Figure A.5.1.

FIGURE A.5.1—HAZARD CATEGORIES FOR GERM CELL MUTAGENS

CATEGORY 1: Substances known to induce heritable mutations or to be regarded as if they induce heritable mutations in the germ cells of humans.

Category 1A: Substances known to induce heritable mutations in germ cells of humans.

Category 1B: Substances which should be regarded as if they induce heritable mutations in the germ cells of humans.

(a) Positive result(s) from in vivo heritable germ cell mutagenicity tests in mammals; or

(b) Positive result(s) from in vivo somatic cell mutagenicity tests in mammals, in combination with some evidence that the substance has potential to cause mutations to germ cells. This supporting evidence may, for example, be derived from mutagenicity/genotoxicity tests in germ cells in vivo, or by demonstrating the ability of the substance or its metabolite(s) to interact with the genetic material of germ cells; or

(c) Positive results from tests showing mutagenic effects in the germ cells of humans, without demonstration of transmission to progeny; for example, an increase in the frequency of aneuploidy in sperm cells of exposed people.

CATEGORY 2: Substances which cause concern for humans owing to the possibility that they may induce heritable mutations in the germ cells of humans.

Positive evidence obtained from experiments in mammals and/or in some cases from in vitro experiments, obtained from:

(a) Somatic cell mutagenicity tests in vivo in mammals; or

(b) Other in vivo somatic cell mutagenicity tests which are supported by positive results from in vitro mutagenicity assays.

Note: Substances which are positive in in vitro mammalian mutagenicity assays, and which also show chemical structure and activity relationships to known germ cell mutagens, should be considered for classification as Category 2 mutagens.

A.5.2.2 Specific considerations for classification of substances as germ cell mutagens:

A.5.2.2.1 To arrive at a classification, test results are considered from experiments determining mutagenic and/or genotoxic effects in germ and/or somatic cells of exposed animals. Mutagenic and/or genotoxic effects determined in in vitro tests shall also be considered.

A.5.2.2.2 The system is hazard based, classifying chemicals on the basis of their intrinsic ability to induce mutations in germ cells. The scheme is, therefore, not meant for the (quantitative) risk assessment of chemical substances.

A.5.2.2.3 Classification for heritable effects in human germ cells is made on the basis of scientifically validated tests. Evaluation of the test results shall be subject to expert judgment and all the available evidence shall be weighed for classification.

A.5.2.2.4 The classification of substances shall be based on the total weight of evidence available, using expert judgment. In those instances where a single well-conducted test is used for classification, it shall provide clear and unambiguously positive results. The relevance of the route of exposure used in the study of the substance compared to the route of human exposure should also be taken into account.

A.5.3 Classification Criteria for Mixtures

It should be noted that the classification criteria for health hazards usually include a tiered scheme in which test data available on the complete mixture are considered as the first tier in the evaluation, followed by the applicable bridging principles, and lastly, cut-off values/concentration limits or additivity. However, this approach is not used for Germ Cell Mutagenicity.

These criteria for Germ Cell Mutagenicity consider the cut-off values/concentration limits as the primary tier and allow the classification to be modified only on a case-by-case evaluation based on available test data for the mixture as a whole.

A.5.3.1 Classification of Mixtures When Data Are Available for All Ingredients or Only for Some Ingredients of the Mixture

A.5.3.1.1 Classification of mixtures shall be based on the available test data for the individual ingredients of the mixture using cut-off values/concentration limits for the ingredients classified as germ cell mutagens.

A.5.3.1.2 The mixture will be classified as a mutagen when at least one ingredient has been classified as a Category 1A, Category 1B or Category 2 mutagen and is present at or above the appropriate cut-off value/concentration limit as shown in Table A.5.1 below for Category 1 and 2 respectively.

<table>
<thead>
<tr>
<th>Ingredient classified as:</th>
<th>Cut-off/concentration limits triggering classification of a mixture as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1A/B mutagen</td>
<td>≥0.1%</td>
</tr>
<tr>
<td>Category 2 mutagen</td>
<td>≥1.0%</td>
</tr>
</tbody>
</table>

Note: The cut-off values/concentration limits in the table above apply to solids and liquids (w/v units) as well as gases (v/v units).

A.5.3.2 Classification of Mixtures When Data Are Available for the Mixture Itself

The classification may be modified on a case-by-case basis based on the available test data for the mixture as a whole. In such cases, the test results for the mixture as a whole must be shown to be conclusive taking into account dose and other factors such as duration, observations and analysis (e.g. statistical analysis, test sensitivity) of germ cell mutagenicity test systems.

A.5.3.3 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles

A.5.3.3.1 Where the mixture itself has not been tested to determine its germ cell mutagenicity hazard, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data will be used in accordance with the following bridging principles as found in paragraph A.5.0.5 of this Appendix: Dilution, Batching, and Substantially similar mixtures.

A.5.4 Examples of Scientifically Validated Test Methods

A.5.4.1 Examples of in vivo heritable germ cell mutagenicity tests are:

(a) Rodent dominant lethal mutation test (OECD 478)

(b) Mouse heritable translocation assay (OECD 485)

(c) Mice specific locus test

A.5.4.2 Examples of in vivo somatic cell mutagenicity tests are:

(a) Mammalian bone marrow chromosome aberration test (OECD 475)

(b) Mouse spot test (OECD 484)

(c) Mammalian erythroid micronucleus test (OECD 474)

A.5.4.3 Examples of mutagenicity/genotoxicity tests in germ cells are:

(a) Mutagenicity tests:

(i) Mammalian spermatogonial chromosome aberration test (OECD 483)

(ii) Spermatid micronucleus assay

(b) Genotoxicity tests:

(i) Sister chromatid exchange analysis in spermatogonia

(ii) Unscheduled DNA synthesis test (UDS) in testicular cells

A.5.4.4 Examples of genotoxicity tests in somatic cells are:

(a) Liver Unscheduled DNA Synthesis (UDS) in vivo (OECD 486)

(b) Mammalian bone marrow Sister Chromatid Exchange (SCE)

A.5.4.5 Examples of in vitro mutagenicity tests are:

(a) In vitro mammalian chromosome aberration test (OECD 473)
1910 OSHA GUIDE

A.6.2.2 Classification as a carcinogen is made on the basis of evidence from reliable and acceptable methods, and is intended to be used for substances which have an intrinsic property to produce such toxic effects. The evaluations are to be based on all existing data, peer-reviewed published studies and additional data accepted by regulatory agencies.

A.6.2.3 Carcinogen classification is a one-step, criterion-based process that involves two interrelated determinations: evaluations of strength of evidence and consideration of all other relevant information to place substances with human cancer potential into hazard categories.

A.6.2.4 Strength of evidence involves the enumeration of tumors in human and animal studies and determination of their level of statistical significance. Sufficient human evidence demonstrates causality between human exposure and the development of cancer; whereas sufficient evidence in animals shows a causal relationship between the agent and an increased incidence of tumors. Limited evidence in humans is demonstrated by a positive association between exposure and cancer, but a causal relationship cannot be stated. Limited evidence in animals is provided when data suggest a carcinogenic effect, but are less than sufficient. (Guidance on consideration of important factors in the classification of carcinogenicity and a more detailed description of the terms “limited” and “sufficient” have been developed by the International Agency for Research on Cancer (IARC) and are provided in non-mandatory Appendix F).

A.6.2.5 Weight of evidence: Beyond the determination of the strength of evidence for carcinogenicity, a number of other factors should be considered that influence the overall likelihood that an agent may pose a carcinogenic hazard in humans. The full list of factors that influence this determination is very lengthy, but some of the important ones are considered here.

A.6.2.5.1 These factors can be viewed as either increasing or decreasing the level of concern for human carcinogenicity. The relative emphasis accorded to each factor depends upon the amount and coherence of evidence bearing on each. Generally there is a requirement for more complete information to decrease than to increase the level of concern. Additional considerations should be used in evaluating the tumor findings and the other factors in a case-by-case manner.

A.6.2.5.2 Some important factors which may be considered in determining the level of concern are:

(a) Tumor type and background incidence;
(b) Multisite responses;
(c) Progression of lesions to malignancy;
(d) Reduced tumor latency;
(e) Additional factors which may increase or decrease the level of concern include:

(i) Whether responses are in single or both sexes;
(ii) Whether responses are in a single species or several species;
(iii) Structural similarity or not to a substance(s) for which there is good evidence of carcinogenicity;
(iv) Routes of exposure;
(v) Comparison of absorption, distribution, metabolism and excretion between test animals and humans;
(vi) The possibility of a confounding effect of excessive toxicity at test doses; and, (vii) Mode of action and its relevance for humans, such as mutagenicity, cytotoxicity with growth stimulation, mitogenesis, immunosuppression.

Mutagenicity: It is recognized that genetic events are central in the overall process of cancer development. Therefore evidence of mutagenic activity in vivo may indicate that a substance has a potential for carcinogenic effects.

A.6.2.5.3 A substance that has not been tested for carcinogenicity may in certain circumstances be classified in Category 1A, Category 1B, or Category 2 based on tumor data from a structural analogue together with substantial support from consideration of other important factors such as formation of common significant metabolites, e.g., for benzidine congeners and dyes.

A.6.2.5.4 The classification should also take into consideration whether or not the substance is absorbed by a given route(s); or whether there are only local tumors at the site of administration for the tested route(s), and adequate testing by other major route(s) show lack of carcinogenicity.

A.6.2.5.5 It is important that whatever is known of the physico-chemical, toxicokinetic and toxicodynamic properties of the substances, as well as any available relevant information on chemical analogues, i.e., structure-activity relationship, is taken into consideration when undertaking classification.

A.6.3 Classification Criteria for Mixtures

FIGURE A.6.1—HAZARD CATEGORIES FOR CARCINOGENS, Continued
TABLE A.6.1—CUT-OFF VALUES/CONCENTRATION LIMITS OF INGREDIENTS OF A MIXTURE CLASSIFIED AS CARCINOGEN THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURE

<table>
<thead>
<tr>
<th>Ingredient classified as:</th>
<th>Category 1</th>
<th>Category 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1 carcinogen</td>
<td>≥0.1%</td>
<td>—</td>
</tr>
<tr>
<td>Category 2 carcinogen</td>
<td>—</td>
<td>≥0.1% (note 1)</td>
</tr>
</tbody>
</table>

Note: If a Category 2 carcinogen ingredient is present in the mixture at a concentration between 0.1% and 1%, information is required on the SDS for a product. However, a label warning is optional. If a Category 2 carcinogen ingredient is present in the mixture at a concentration of ≥1%, both an SDS and a label is required and the information must be included on each.

A.6.3.2 Classification of Mixtures When Data Are Available for the Complete Mixture

A mixture may be classified based on the available test data for the mixture as a whole. In such cases, the test results for the mixture as a whole must be shown to be conclusive taking into account dose and other factors such as duration, observations and analysis (e.g., statistical analysis, test sensitivity) of carcinogenicity test systems.

A.6.3.3 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles

Where the mixture itself has not been tested to determine its carcinogenic hazard, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data will be used in accordance with the following bridging principles as found in paragraph A.6.5.5 of this Appendix: Dilution; Batching; and Substantially similar mixtures.

A.6.4 Classification of Carcinogenicity

See Non-mandatory Appendix F for further guidance regarding hazard classification for carcinogenicity and how to relate carcinogenicity classification from IARC and NTP to GHS.

A.6.4.1 Chemical manufacturers, importers and employers evaluating chemicals may treat the following sources as establishing that a substance is a carcinogen or potential carcinogen for hazard communication purposes in lieu of applying the criteria described herein:

A.6.4.1.1 National Toxicology Program (NTP), "Report on Carcinogens" (latest edition);
A.6.4.1.2 International Agency for Research on Cancer (IARC) "Monographs on the Evaluation of Carcinogenic Risks to Humans" (latest edition);
A.6.4.2 Where OSHA has included cancer as a health hazard to be considered by classifiers for a chemical covered by 29 CFR part 1910, Subpart Z, Toxic and Hazardous Substances, chemical manufacturers, importers, and employers shall classify the chemical as a carcinogen.

A.7 REPRODUCTIVE TOXICITY

A.7.1 Definitions and General Considerations

A.7.1.1 Reproductive toxicity includes adverse effects on sexual function and fertility in adult males and females, as well as adverse effects on development of the offspring. Some reproductive toxic effects cannot be clearly assigned to either impairment of sexual function and fertility or to developmental toxicity. Nonetheless, chemicals with these effects shall be classified as reproductive toxicants.

For classification purposes, the known induction of genetically based inheritable effects in the offspring is addressed in Germ cell mutagenicity (See A.5).

A.7.1.2 Adverse effects on sexual function and fertility means any effect of chemicals that interferes with reproductive ability or sexual capacity. This includes, but is not limited to, alterations to the female and male reproductive system, adverse effects on onset of puberty, gamete production and transport, reproductive cycle normality, sexual behaviour, fertility, parturition, pregnancy outcomes, premature reproductive senescence, or modifications in other functions that are dependent on the integrity of the reproductive systems.

A.7.1.3 Adverse effects on development of the offspring means any effect of reproductive toxicity which interferes with normal development of the conceptus either before or after birth, which is induced during pregnancy or results from parental exposure. These effects can be manifested at any point in the life span of the organism. The major manifestations of developmental toxicity include death of the developing organism, structural abnormality, altered growth and functional deficiency.

A.7.1.4 Adverse effects on or via lactation are also included in reproductive toxicity, but for classification purposes, such effects are treated separately (See A.7.2.1).

A.7.2 Classification Criteria for Substances

A.7.2.1 For the purpose of classification for reproductive toxicity, substances shall be classified in one of two categories in accordance with Figure A.7.1(a). Effects on sexual function and fertility, and on development, shall be considered. In addition, effects on or via lactation shall be classified in a separate hazard category in accordance with Figure A.7.1(b).

FIGURE A.7.1(A)—HAZARD CATEGORIES FOR REPRODUCTIVE TOXICANTS

CATEGORY 1: Known or presumed human reproductive toxicant

Substances shall be classified in Category 1 for reproductive toxicity when they are known to have produced an adverse effect on sexual function and fertility or on development in humans or when there is evidence from animal studies, possibly supplemented with other information, to provide a strong presumption that the substance has the capacity to interfere with reproduction in humans. The classification of a substance is further distinguished on the basis of whether the evidence for classification is primarily from human data (Category 1A) or from animal data (Category 1B).

Category 1A: Known human reproductive toxicant.

The classification of a substance in this category is largely based on evidence from humans.

Category 1B: Presumed human reproductive toxicant.

The classification of a substance in this category is largely based on evidence from experimental animals. Data from animal studies shall provide sufficient evidence of an adverse effect on sexual function and fertility or on development in the absence of other toxic effects, or if occurring together with other toxic effects the adverse effect on reproduction is considered not to be a secondary non-specific consequence of other toxic effects. However, where there is mechanistic information that raises doubt about the relevance of the effect for humans, classification in Category 2 may be more appropriate.

CATEGORY 2: Suspected human reproductive toxicant.

Substances shall be classified in Category 2 for reproductive toxicity when there is some evidence from humans or experimental animals, possibly supplemented with other information, of an adverse effect on sexual function and fertility, or on development, in the absence of other toxic effects, or if occurring together with other toxic effects the adverse effect on reproduction is considered not to be a secondary non-specific consequence of the other toxic effects, and where the evidence is not sufficiently convincing to place the substance in Category 1. For instance, deficiencies in the study may make the quality of evidence less convincing, and in view of this, Category 2 would be the more appropriate classification.

FIGURE A.7.1(B)—HAZARD CATEGORY FOR EFFECTS ON OR VIA LACTATION

EFFECTS ON OR VIA LACTATION

HAZARD COMMUNICATION—25

10/12
FIGURE A.7.1(B)—HAZARD CATEGORY FOR EFFECTS ON OR VIA LACTATION, Continued

Effects on or via lactation shall be classified in a separate single category. Chemicals that are absorbed by women and have been shown to interfere with lactation or that may be present (including metabolites) in breast milk in amounts sufficient to cause concern for the health of a breastfed child shall be classified to indicate this property hazardous to breastfed babies. This classification shall be assigned on the basis of:

(a) absorption, metabolism, distribution and excretion studies that indicate the likelihood the substance would be present in potentially toxic levels in breast milk; and/or
(b) results of one or two generation studies in animals which provide clear evidence of adverse effect in the offspring due to transfer in the milk or adverse effect on the quality of the milk; and/or
(c) human evidence indicating a hazard to babies during the lactation period.

A.7.2.2 Basis of Classification

A.7.2.2.1 Classification is made on the basis of the criteria, outlined above, to provide an assessment of the total weight of evidence and the use of expert judgment. Classification as a reproductive toxicant is intended to be used for substances which have an intrinsic, specific property to produce an adverse effect on reproduction and substances should not be so classified if such an effect is produced solely as a non-specific secondary consequence of other toxic effects.

A.7.2.2.2 In the evaluation of toxic effects on the developing offspring, it is important to consider the possible influence of maternal toxicity.

A.7.2.2.3 For human evidence to provide the primary basis for a Category 1A classification there must be reliable evidence of an adverse effect on reproduction in humans. Evidence used for classification shall be from well conducted epidemiological studies, if available, which include the use of appropriate controls, unbiased assessment, and due consideration of bias or confounding factors. Less rigorous data from studies in humans may be sufficient for a Category 1A classification if supplemented with adequate data from studies in experimental animals, but classification in Category 1B may also be considered.

A.7.2.3 Weight of Evidence

A.7.2.3.1 Classification as a reproductive toxicant is made on the basis of an assessment of the total weight of evidence using expert judgment. This means that all available information that bears on the determination of reproductive toxicity is considered together. Included is information such as epidemiological studies and case reports in humans and specific reproduction studies such as sub-acute, chronic and special study results in animals that provide relevant information regarding toxicity to reproductive and related endocrine organs. Evaluation of substances chemically related to the material under study may also be included, particularly when information on the material is scarce. The weight given to the available evidence will be influenced by factors such as the quality of the studies, consistency of results, nature and severity of effects, level of statistical significance for intergroup differences, number of endpoints affected, relevance of route of administration to humans and freedom from bias. Both positive and negative results are considered together in a weight of evidence determination. However, a single, positive study performed according to good scientific principles and with statistically or biologically significant positive results may justify classification (See also A.7.2.2.3).

A.7.2.3.2 Toxicokinetic studies in animals and humans, site of action and mechanism or mode of action study results may provide relevant information, which could reduce or increase concerns about the hazard to human health. If it is conclusively demonstrated that the clearly identified mechanism or mode of action has no relevance for humans or when the toxicokinetic differences are so marked that it is certain that the hazardous property will not be expressed in humans then a chemical which produces an adverse effect on reproduction in experimental animals should not be classified.

A.7.2.3.3 In some reproductive toxicity studies in experimental animals the effects observed may be considered of low or minimal toxicological significance and classification may not necessarily be the outcome. These effects include, for example, small changes in semen parameters or in the incidence of spontaneous defects in the fetus, small changes in the proportions of common fetal variants such as are observed in skeletal examinations, or in fetal weights, or small differences in postnatal developmental assessments.

A.7.2.4 Data from animal studies shall provide sufficient evidence of specific reproductive toxicity in the absence of other systemic toxic effects. However, if developmental toxicity occurs together with other toxic effects in the dam (mother), the potential influence of the generalized adverse effects should be assessed to the extent possible. The preferred approach is to consider adverse effects in the embryo/fetus first, and then evaluate maternal toxicity, along with any other factors which are likely to have influenced these effects, as part of the weight of evidence. In general, developmental effects that are observed at maternally toxic doses should not be automatically discounted. Discounting developmental effects that are observed at maternally toxic doses can only be done on a case-by-case basis when a causal relationship is established or refuted.

A.7.2.5.5 If appropriate information is available it is important to try to determine whether developmental toxicity is due to a specific maternally mediated mechanism or to a non-specific secondary mechanism, like maternal stress and the disruption of homeostasis. Generally, the presence of maternal toxicity should not be used to negate findings of embryofetal effects, unless it can be clearly demonstrated that the effects are secondary non-specific effects. This is especially the case when the effects in the offspring are significant, e.g., irreversible effects such as structural malformations. In some situations it is reasonable to assume that reproductive toxicity is due to a secondary consequence of maternal toxicity and that the chemical is too toxic to the mother and there is severe inanition; they are incapable of nursing pups; or they are prostrate or dying.

A.7.2.4 Maternal Toxicity

A.7.2.4.1 Development of the offspring throughout gestation and during the early postnatal stages can be influenced by toxic effects in the mother either through non-specific mechanisms related to stress and the disruption of maternal homeostasis or by specific maternally-mediated mechanisms. So, in the interpretation of the developmental outcome to decide classification of developmental effects it is important to consider the possible influence of maternal toxicity. This is a complex issue because of uncertainties surrounding the relationship between maternal toxicity and developmental outcome. Expert judgment and a weight of evidence approach, using all available studies, shall be used to determine the degree of influence to be attributed to maternal toxicity when interpreting the criteria for classification for developmental effects. The adverse effects in the embryo/fetus shall be first considered, and then maternal toxicity, along with any other factors which are likely to have influenced these effects, as weight of evidence, to help reach a conclusion about classification.

A.7.2.4.2 Based on pragmatic observation, it is believed that maternal toxicity may, depending on severity, influence development via non-specific secondary mechanisms, producing effects such as depressed fetal weight, maternal osilation, and possible resorptions and certain malformations in some strains of certain species. However, the limited numbers of studies which have investigated the relationship between developmental effects and general maternal toxicity have failed to demonstrate a consistent, reproducible relationship across species. Developmental effects which occur even in the absence of maternal toxicity are considered to be evidence of developmental toxicity, unless it can be unequivocally demonstrated on a case by case basis that the developmental effects are secondary to maternal toxicity. Moreover, classification shall be considered where there is a significant toxic effect in the offspring, e.g., irreversible effects such as structural malformations, embryofetal lethality, or significant post-natal functional deficiencies.

A.7.2.4.3 Classification shall not automatically be discounted for chemicals that produce developmental toxicity only in association with maternal toxicity, even if a specific maternally-mediated mechanism has been demonstrated. In such a case, classification in Category 2 may be considered more appropriate than Category 1. However, when a chemical is so toxic that maternal death or severe inanition results, or the dams (mothers) are prostrate and incapable of nursing the pups, it is reasonable to assume that developmental toxicity is produced solely as a secondary consequence of maternal toxicity and discount the developmental effects. Classification is not intended to identify the outcome in the case of minor developmental changes, e.g., a small reduction in fetal/pup body weight or retardation of ossification when seen in association with maternal toxicity.

A.7.2.4.4 Some of the endpoints used to assess maternal toxicity are provided below. Data on these endpoints, if available, shall be evaluated in context of their statistical or biological significance and dose-response relationship.

(a) Maternal mortality: An increased incidence of mortality among the treated dams over the controls shall be considered evidence of maternal
hazardous property will not be expressed in humans then a substance which produces an adverse effect in experimental animals should not be classified.

A.7.2.5.8 Studies involving routes of administration such as intravenous or intraperitoneal injection, which may result in exposure of the reproductive organs to unrealistically high levels of the test substance, or eliciting local damage to the reproductive organs, e.g., by irritation, must be interpreted with extreme caution and on their own are not normally the basis for classification.

A.7.2.5.7 There is general agreement about the concept of a limit dose, above which the production of an adverse effect may be considered to be outside the criteria which lead to classification. Some test guidelines specify a limit dose, other test guidelines qualify the limit dose with a statement that higher doses may be necessary if anticipated human exposure is sufficiently high that an adequate margin of exposure would not be achieved. Also, due to species differences in toxicokinetics, establishing a specific limit dose may not be adequate for situations where humans are more sensitive than the animal model.

A.7.2.5.8 In principle, adverse effects on reproduction seen only at very high dose levels in animal studies (for example doses that induce prostration, severe inappetence, excessive mortality) do not normally lead to classification, unless other information is available, for example, toxicokinetics information indicating that humans may be more susceptible than animals, to suggest that classification is appropriate.

A.7.2.5.9 However, specification of the actual "limit dose" will depend upon the test method that has been employed to provide the test results.

A.7.3 Classification Criteria for Mixtures

A.7.3.1 Classification of Mixtures When Data Are Available for All Ingredients or Only for Some Ingredients of the Mixture

A.7.3.1.1 The mixture shall be classified as a reproductive toxicant when at least one ingredient has been classified as a Category 1 or Category 2 reproductive toxicant and is present at or above the appropriate cut-off value/concentration limit specified in Table A.7.1 for Category 1 and 2, respectively.

A.7.3.1.2 The mixture shall be classified for effects on or via lactation when at least one ingredient has been classified for effects on or via lactation and is present at or above the appropriate cut-off value/concentration limit specified in Table A.7.1 for the additional category for effects on or via lactation.

TABLE A.7.1—CUT-OFF VALUES/CONCENTRATION LIMITS OF INGREDIENTS OF A MIXTURE CLASSIFIED AS REPRODUCtIVE TOXICANTS OR FOR EFFECTS ON OR VIA LACTATION THAT TRIGGER CLASSIFICATION OF THE MIXTURE

<table>
<thead>
<tr>
<th>Ingredients classified as:</th>
<th>Category 1 reproductive toxicant</th>
<th>Category 2 reproductive toxicant</th>
<th>Additional category for effects on or via lactation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-off values/concentration limits triggering classification of a mixture as:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 1 reproductive toxicant</td>
<td>≥0.1%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Category 2 reproductive toxicant</td>
<td>—</td>
<td>≥0.1%</td>
<td>—</td>
</tr>
<tr>
<td>Additional category for effects on or via lactation</td>
<td>—</td>
<td>—</td>
<td>≥0.1%</td>
</tr>
</tbody>
</table>

A.7.3.2 Classification of Mixtures When Data Are Available for the Complete Mixture
Available test data for the mixture as a whole may be used for classification on a case-by-case basis. In such cases, the test results for the mixture as a whole may be used for classification. When there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data shall be used in accordance with the following bridging principles as found in paragraph A.0.5 of this Appendix: Dilution, Satcheting, and Substantially similar mixtures.

A.7.3.3 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles

A.7.3.3.1 Where the mixture itself has not been tested to determine its reactivity, toxicity, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data shall be used in accordance with the following bridging principles as found in paragraph A.0.5 of this Appendix: Dilution, Satcheting, and Substantially similar mixtures.

A.8 SPECIFIC TARGET ORGAN TOXICITY SINGLE EXPOSURE

A.8.1 Definitions and General Considerations

A.8.1.1 Specific target organ toxicity—single exposure, (STOT-SE) means specific, non-thermal target organ toxicity arising from a single exposure to a chemical. All significant health effects that can impair function, both reversible and irreversible, immediately and/or delayed and not specifically addressed in A.1 to A.7 and A.10 of this Appendix are included. Specific target organ toxicity following repeated exposure is classified in accordance with SPECIFIC TARGET ORGAN TOXICITY—REPEATED EXPOSURE (A.9 of this Appendix) and is therefore not included here.

A.8.1.2 Classification identifies the chemical as being a specific target organ toxicant and, as such, it presents a potential for adverse health effects in people who are exposed to it.

A.8.1.3 The adverse health effects produced by a single exposure include consistent and identifiable toxic effects in humans, or, in experimental animals, toxicoologically significant changes which have affected the function or morphology of a tissue/organ, or have produced serious changes to the biochemistry or histology of the organism, and these changes are relevant for human health. Human data is the primary source of evidence for this hazard class.

A.8.1.4 Assessment shall take into consideration not only significant changes in a single organ or biological system but also generalized changes of a less severe nature involving several organs.

A.8.1.5 Specific target organ toxicity can occur by any route that is relevant for humans, i.e., principally oral, dermal or inhalation.

A.8.1.6 The classification criteria for specific organ systemic toxicity single exposure are organized as criteria for substances Categories 1 and 2 (See A.8.2.1), criteria for substances Category 3 (See A.8.2.2) and criteria for mixtures (See A.8.3). See also Figure A.8.1.

A.8.2 Classification Criteria for Substances

A.8.2.1 Substances of Category 1 and Category 2

A.8.2.1.1 Substances shall be classified for immediate or delayed effects separately, by the use of expert judgment on the basis of the weight of all evidence available, including the use of recommended guidance values (See A.8.2.1.0). Substances shall then be classified in Category 1 or 2, depending upon the nature and severity of the effect(s) observed, in accordance with Figure A.8.1.

FIGURE A.8.1—HAZARD CATEGORIES FOR SPECIFIC TARGET ORGAN TOXICITY FOLLOWING SINGLE EXPOSURE

CATEGORY 1: Substances that have produced significant toxicity in humans, or that, on the basis of evidence from studies in experimental animals can be presumed to have the potential to produce significant toxicity in humans following single exposure

Substances are classified in Category 1 for STOT-SE on the basis of:

(a) Reliable and good quality evidence from human cases or epidemiological studies; or

(b) Observations from appropriate studies in experimental animals in which significant and/or severe toxic effects of relevance to human health were produced at generally low exposure concentrations. Guidance dose/concentration values are provided below (See A.8.2.1.0) to be used as part of weight-of-evidence evaluation.

CATEGORY 2: Substances that, on the basis of evidence from studies in experimental animals, can be presumed to have the potential to be harmful to human health following single exposure.

Substances are classified in Category 2 for STOT-SE on the basis of observations from appropriate studies in experimental animals in which significant toxic effects, of relevance to human health, were produced at generally moderate exposure concentrations. Guidance dose/concentration values are provided below (See A.8.2.1.9) in order to help in classification.

In exceptional cases, human evidence can also be used to place a substance in Category 2 (See A.8.2.1.6).

CATEGORY 3: Transient target organ effects

There are target organ effects for which a substance does not meet the criteria to be classified in Categories 1 or 2 indicated above. These are effects which adversely alter human function for a short duration after exposure and from which humans may recover in a reasonable period without suffering significant alteration of structure or function. This category only includes narcotic effects and respiratory tract irritation. Substances are classified specifically for these effects as discussed in A.8.2.2.

Note: The primary target organ/organ system shall be identified where possible, and where this is not possible, the substance shall be identified as a general toxicant. The data shall be evaluated and, where possible, shall not include secondary effects (e.g., a hepatotoxicant can produce secondary effects in the nervous or gastro-intestinal systems).

A.8.2.1.2 The relevant route(s) of exposure by which the classified substance produces damage shall be identified.

A.8.2.1.3 Classification is determined by expert judgment, on the basis of the weight of all evidence available including the guidance presented below.

A.8.2.1.4 Weight of evidence of all available data, including human incidents, epidemiology, and studies conducted in experimental animals is used to substantiate specific target organ toxic effects that merit classification.

A.8.2.1.5 The information required to evaluate specific target organ toxicity comes either from single exposure in humans (e.g., exposure at home, in the workplace or environmentally), or from studies conducted in experimental animals. The standard animal studies in rats and mice that provide this information are acute toxicity studies which can include clinical observations and detailed macroscopic and microscopic examination to enable the toxic effects on target tissues/organisms to be identified. Results of acute toxicity studies conducted in other species may also provide relevant information. In exceptional cases, based on expert judgment, it may be appropriate to place certain substances with human evidence of target organ toxicity in Category 2: (a) when the weight of human evidence is not sufficiently convincing to warrant Category 1 classification, and/or (b) based on the nature and severity of effects. Dose/concentration levels in humans shall not be considered in the classification and any available evidence from animal studies shall be consistent with the Category 2 classification. In other words, if there are also animal data available on the substance that warrant Category 1 classification, the chemical shall be classified as Category 1.

A.8.2.1.7 Effects considered to support classification for Category 1 and 2

A.8.2.1.7.1 Classification is supported by evidence associating single exposure to the substance with a consistent and identifiable toxic effect.

A.8.2.1.7.2 Evidence from human experience/incidents is usually restricted to reports of adverse health consequences, often with uncertainty about exposure conditions, and may not provide the scientific detail that can be obtained from well-conducted studies in experimental animals.

A.8.2.1.7.3 Evidence from appropriate studies in experimental animals can furnish much more detail, in the form of clinical observations, and macroscopic and microscopic pathological examination and this can often reveal hazards that may not be life-threatening but could indicate functional impairment. Consequently, available evidence, and evidence relevance to human health, must be taken into consideration in the classification process. Relevant toxic effects in humans and/or animals include, but are not limited to:

(a) Morbidity resulting from single exposure;

(b) Significant functional changes, more than transient in nature, in the respiratory system, central or peripheral nervous systems, other organs or
other organ systems, including signs of central nervous system depression and effects on special senses (e.g., sight, hearing and sense of smell);
(c) Any consistent and significant adverse change in clinical biochemistry, hematology, or urinalysis parameters;
(d) Significant organ damage that may be noted at necropsy and/or subsequently seen or confirmed at microscopic examination;
(e) Multi-focal or diffuse necrosis, fibrosis or granuloma formation in vital organs with regenerative capacity;
(f) Morphological changes that are potentially reversible but provide clear evidence of marked organ dysfunction; and,
(g) Evidence of appreciable cell death (including cell degeneration and reduced cell number) in vital organs incapable of regeneration.

A.8.2.1.8 Effects considered not to support classification for Category 1 and 2
Effects may be seen in humans and/or animals that do not justify classification. Such effects include, but are not limited to:
(a) Clinical observations or small changes in bodyweight gain, food consumption or water intake that may have some toxicological importance but that do not, by themselves, indicate significant toxicity;
(b) Small changes in clinical biochemistry, hematology or urinalysis parameters and/or transient effects, when such changes or effects are of doubtful or of minimal toxicological importance;
(c) Changes in organ weights with no evidence of organ dysfunction;
(d) Adaptive responses that are not considered toxicologically relevant; and,
(e) Substance-induced species-specific mechanisms of toxicity, i.e., demonstrated with reasonable certainty to be not relevant for human health, shall not justify classification.

A.8.2.1.9 Guidance values to assist with classification based on the results obtained from studies conducted in experimental animals for Category 1 and 2
A.8.2.1.9.1 In order to help reach a decision about whether a substance shall be classified or not, and to what degree it shall be classified (Category 1 vs. Category 2), dose/concentration "guidance values" are provided for the consideration of the dose/concentration which has been shown to produce significant health effects. The principal argument for proposing such guidance values is that all chemicals are potentially toxic and there has to be a reasonable dose/concentration above which a degree of toxic effect is acknowledged.

A.8.2.1.9.2 Thus, in animal studies, when significant toxic effects are observed that indicate classification, consideration of the dose/concentration at which these effects were seen, in relation to the suggested guidance values, provides useful information to help assess the need to classify (since the toxic effects are a consequence of the hazardous property(ies) and also the dose/concentration).

A.8.2.1.9.3 The guidance value (C) ranges for single-dose exposure which has produced a significant non-lethal toxic effect are those applicable to acute toxicity testing, as indicated in Table A.8.1.

<table>
<thead>
<tr>
<th>Route of exposure</th>
<th>Units</th>
<th>Guidance value ranges for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Category 1</td>
</tr>
<tr>
<td>Oral (rat)</td>
<td>mg/kg</td>
<td>C ≤300</td>
</tr>
<tr>
<td>Body weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal (rat or rabbit)</td>
<td>mg/kg</td>
<td>C ≤1,000</td>
</tr>
<tr>
<td>Body weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) gas</td>
<td>ppm/V/4h</td>
<td>C ≤2,500</td>
</tr>
<tr>
<td>Inhalation (rat) vapor</td>
<td>mg/1/4h</td>
<td>C ≤10</td>
</tr>
</tbody>
</table>

A.8.2.1.9.4 The guidance values and ranges mentioned in Table A.8.1 are intended only for guidance purposes, i.e., to be used as part of the weight of evidence approach, and to assist with decisions about classification. They are not intended as strict demarcation values. Guidance values are not provided for Category 3 since this classification is primarily based on human data; animal data may be included in the weight of evidence evaluation.

A.8.2.1.9.5 Thus, it is feasible that a specific profile of toxicity occurs at a dose/concentration below the guidance value, e.g., <2000 mg/kg body weight by the oral route, however the nature of the effect may result in the decision not to classify. Conversely, a specific profile of toxicity may be seen in an animal studies occurring at above a guidance value, e.g., ≥2000 mg/kg body weight by the oral route, and in addition there is supplementary information from other sources, e.g., other single dose studies, or human case experience, which supports a conclusion that, in view of the weight of evidence, classification is the prudent action to take.

A.8.2.1.10 Other considerations
A.8.2.1.10.1 When a substance is characterized only by use of animal data the classification process includes reference to dose/concentration guidance values as one of the elements that contribute to the weight of evidence approach.

A.8.2.1.10.2 When well-substantiated human data are available showing a specific target organ toxic effect that can reliably attributed to single exposure to a substance, the substance shall be classified. Positive human data, regardless of probable dose, predominates over animal data. Thus, if a substance is unclassified because specific target organ toxicity observed was considered not relevant or significant to humans, if subsequent human incident data become available showing a specific target organ toxic effect, the substance shall be classified.

A.8.2.1.10.3 A substance that has not been tested for specific target organ toxicity shall, where appropriate, be classified on the basis of data from a scientifically validated structure activity relationship and expert judgment-based extrapolation from a structural analogue that has previously been classified together with substantial support from consideration of other important factors such as formation of common significant metabolites.

A.8.2.2 Substances of Category 3
A.8.2.2.1 Criteria for respiratory tract irritation
The criteria for classifying substances as Category 3 for respiratory tract irritation are:
(a) Respiratory irritant effects (characterized by localized redness, edema, pruriit and/or pain) that impair function with symptoms such as cough, pain, choking, and breathing difficulties are included. It is recognized that this evaluation is based primarily on human data;
(b) Subjective human observations supported by objective measurements of clear respiratory tract irritation (RTI) (e.g., electrophysiological responses, biomarkers of inflammation in nasal or bronchoalveolar lavage fluids);
(c) The symptoms observed in humans shall also be typical of those that would be produced in the exposed population rather than being an isolated idiosyncratic reaction or response triggered only in individuals with hypersensitive airways. Ambiguous reports simply of "irritation" should be excluded as this term is commonly used to describe a wide range of sensations including those such as smell, unpleasant taste, a tickling sensation, and dryness, which are outside the scope of classification for respiratory tract irritation;
(d) There are currently no scientifically validated animal tests that deal specifically with RTI; however, useful information may be obtained from the single and repeated inhalation toxicity tests. For example, animal studies may provide useful information in terms of clinical signs of toxicity (dyspnea, rhinitis etc) and histopathology (e.g., hyperemia, edema, minimal inflammation, thickened mucous layer) which are reversible and may be reflective of the characteristic clinical symptoms described above. Such animal studies can be used as part of the weight of evidence evaluation; and,
(e) This special classification will occur only when more severe organ effects including the respiratory system are not observed as those effects would require a higher classification.

A.8.2.2.2 Criteria for narcotic effects
The criteria for classifying substances in Category 3 for narcotic effects are:
(a) Central nervous system depression including narcotic effects in humans such as drowsiness, narcosis, reduced alertness, loss of reflexes, lack of coordination, and vertigo are included. These effects can also be manifested as severe headache or nausea, and can lead to reduced judgment, dizziness, irritability, fatigue, impaired memory function, deficits in perception and coordination, reaction time, or sleepiness; and,

TABLE A.8.1—GUIDANCE VALUE RANGES FOR SINGLE-DOSE EXPOSURES
(b) Narcotic effects observed in animal studies may include lethargy, lack of coordination, righting reflex, narcosis, and ataxia. If these effects are not transient in nature, then they shall be considered for classification as Category 1 or 2.

A.8.3 Classification Criteria for Mixtures

A.8.3.1 Mixtures are classified using the same criteria as for substances, or alternatively as described below. As with substances, mixtures may be classified for specific target organ toxicity following single exposure, repeated exposure, or both.

A.8.3.2 Classification of Mixtures When Data Are Available for the Complete Mixture

When reliable and good quality evidence from human experience or appropriate studies in experimental animals, as described in the criteria for substances, is available for the mixture, then the mixture shall be classified by weight of evidence evaluation of this data. Care shall be exercised in evaluating data on mixtures, so that the dose, duration, observation or analysis, do not render the results inconclusive.

A.8.3.3 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles

A.8.3.3.1 Where the mixture itself has not been tested to determine its specific target organ toxicity, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, these data shall be used in accordance with the following bridging principles as found in paragraph A.0.5 of this Appendix: Dilution, Batching, Concentration of mixtures, Interpolation within one toxicity category, Substantially similar mixtures, or Aerosols.

A.8.3.4 Classification of Mixtures When Data Are Available for All Ingredients or Only for Some Ingredients of the Mixture

A.8.3.4.1 Where there is reliable evidence or test data for the specific mixture itself, and the bridging principles cannot be used to enable classification, then classification of the mixture is based on the classification of the ingredient substances. In this case, the mixture shall be classified as a specific target organ toxicant (specific organ specified), following single exposure, repeated exposure, or both when at least one ingredient has been classified as a Category 1 or Category 2 specific target organ toxicant and is present at or above the appropriate cut-off value/concentration limit specified in Table A.8.2 for Categories 1 and 2, respectively.

<table>
<thead>
<tr>
<th>Ingredient classified as:</th>
<th>Cut-off values/concentration limits triggering classification of a mixture as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>Category 2</td>
</tr>
<tr>
<td>Category 1 Target organ toxicant</td>
<td>≥1.0%</td>
</tr>
<tr>
<td>Category 2 Target organ toxicant</td>
<td>—</td>
</tr>
</tbody>
</table>

A.8.3.4.2 These cut-off values and consequent classifications shall be applied equally and appropriately to both single- and repeated-dose target organ toxicants.

A.8.3.4.3 Mixtures shall be classified for either or both single and repeated dose toxicity independently.

A.8.3.4.4 Care shall be exercised when toxicants affecting more than one organ system are combined that the potentiation or synergistic interactions are considered, because certain substances can cause target organ toxicity at ≤1% concentration when other ingredients in the mixture are known to potentiate its toxic effect.

A.8.3.4.5 Care shall be exercised when extrapolating the toxicity of a mixture that contains Category 3 ingredient(s). A cut-off value/concentration limit of 20%, considered as an additive of all Category 3 ingredients for each hazard endpoint, is appropriate; however, this cut-off value/concentration limit may be higher or lower depending on the Category 3 ingredient(s) involved and the fact that some effects such as respiratory tract irritation may not occur below a certain concentration while other effects such as narcotic effects may occur below this 20% value. Expert judgment shall be exercised. Respiratory tract irritation and narcotic effects are to be evaluated separately in accordance with the criteria given in A.8.2.2. When conducting classification for these hazards, the contribution of each ingredient should be considered additive, unless there is evidence that the effects are not additive.

A.9 SPECIFIC TARGET ORGAN TOXICITY REPEATED OR PROLONGED EXPOSURE

A.9.1 Definitions and general considerations

A.9.1.1 Specific target organ toxicity—repeated exposure (STOT-RE) means specific target organ toxicity arising from repeated exposure to a substance or mixture. All significant health effects that can impair function, both reversible and irreversible, immediate and/or delayed and not specifi-

A.9.1.2 Classification identifies the substance or mixture as being a specific target organ toxicant and, as such, may present a potential for adverse health effects in people who are exposed to it.

A.9.1.3 These adverse health effects produced by repeated exposure include consistent and identifiable toxic effects in humans, or, in experi-

A.9.1.4 Assessment shall take into consideration not only significant changes in a single organ or biological system but also generalized changes of a less severe nature involving several organs.

A.9.1.5 Specific target organ toxicity can occur by any route that is rele-

A.9.2 Classification Criteria for Substances

A.9.2.1 Substances shall be classified as STOT-RE by expert judgment on the basis of the weight of all evidence available, including the use of recommended guidance values which take into account the duration of expo-

A.9.2.2 Substances shall be placed in one of two categories, depending upon the nature and severity of the effect(s) observed, in accordance with Figure A.9.1.

FIGURE A.9.1—HAZARD CATEGORIES FOR SPECIFIC TARGET ORGAN TOXICITY FOLLOWING REPEATED EXPOSURE

CATEGORY 1: Substances that have produced significant toxicity in humans, or that, on the basis of evidence from studies in experimental animals can be presumed to have the potential to produce significant toxicity in humans following repeated or prolonged exposure.

Substances are classified in Category 1 for specific target organ toxicity (repeated exposure) on the basis of:

(a) reliable and good quality evidence from human cases or epidemiological studies; or,

(b) observations from appropriate studies in experimental animals in which significant and/or severe toxic effects, of relevance to human health, were produced at generally low exposure concentrations. Guidance dose/concentration values are provided below (See A.9.2.9) to be used as part of weight-of-evidence evaluation.

CATEGORY 2: Substances that, on the basis of evidence from studies in experimental animals can be presumed to have the potential to be harmful to human health following repeated or prolonged exposure.

Substances are classified in Category 2 for specific target organ toxicity (repeated exposure) on the basis of observations from appropriate studies in experimental animals in which significant toxic effects, of relevance to human health, were produced at generally moderate exposure concentrations. Guidance dose/concentration values are provided below (See A.9.2.9) in order to help in classification.

In exceptional cases human evidence can also be used to place a substance in Category 2 (See A.9.2.6).
FIGURE A.9.1—HAZARD CATEGORIES FOR SPECIFIC TARGET ORGAN TOXICITY FOLLOWING REPEATED EXPOSURE, Continued

Note: The primary target organ/system shall be identified where possible, or the substance shall be identified as a general toxicant. The data shall be carefully evaluated and, where possible, shall not include secondary effects (e.g., a hepatotoxicant can produce secondary effects in the nervous or gastrointestinal systems).

A.9.2.2 The relevant route of exposure by which the classified substance produces damage shall be identified.

A.9.2.3 Classification is determined by expert judgment, on the basis of the weight of all evidence available including the guidance presented below.

A.9.2.4 Weight of evidence of all data, including human incidents, epidemiology, and studies conducted in experimental animals, is used to substantiate specific target organ toxic effects that merit classification.

A.9.2.5 The information required to evaluate specific target organ toxicity comes either from repeated exposure in humans, e.g., exposure at home, in the workplace or environmentally, or from studies conducted in experimental animals. The standard animal studies in rats or mice that provide this information are 28 day, 90 day or lifetime studies (up to 2 years) that include hematological, clinico-chemical and detailed macroscopic and microscopic examination to enable the toxic effect on target tissues/organs to be identified. Data from repeat dose studies performed in other species may also be used. Other long-term exposure studies, e.g., for carcinogenicity, neurotoxicity or reproductive toxicity, may also provide evidence of specific target organ toxicity that could be used in the assessment of classification.

A.9.2.6 In exceptional cases, based on expert judgment, it may be appropriate to place certain substances with human evidence of specific target organ toxicity in Category 2: (a) when the weight of human evidence is not sufficiently convincing to warrant Category 1 classification, and/or (b) based on the nature and severity of effects. Dose/concentration levels in humans shall not be considered in the classification and any available evidence from animal studies shall be consistent with the Category 2 classification. In other words, if there are also animal data available on the substance that warrant Category 1 classification, the substance shall be classified as Category 1.

A.9.2.7 Effects Considered To Support Classification

A.9.2.7.1 Classification is supported by reliable evidence associating repeated exposure to the substance with a consistent and identifiable toxic effect.

A.9.2.7.2 Evidence from human experience/incidents is usually restricted to reports of adverse health consequences, often with uncertainty about exposure conditions, and may not provide the scientific detail that can be obtained from well-conducted studies in experimental animals.

A.9.2.7.3 Evidence from appropriate studies in experimental animals can furnish much more detail, in the form of clinical observations, hematology, clinical chemistry, macroscopic and microscopic pathological examination and this can confirm real hazards that may not be life-threatening but could indicate functional impairment. Consequently all available evidence, and relevance to human health, must be taken into consideration in the classification process. Relevant toxic effects in humans and/or animals include, but are not limited to:

(a) Morbidity or death resulting from repeated or long-term exposure. Morbidity or death may result from repeated exposure, even to relatively low doses/concentrations, due to bioaccumulation of the substance or its metabolites, or due to the overwhelming of the detoxification process by repeated exposure;

(b) Significant functional changes in the central or peripheral nervous systems or other organ systems, including signs of central nervous system depression and effects on special senses (e.g., sight, hearing and sense of smell);

(c) Any consistent and significant adverse change in clinical biochemistry, hematology, or urinalysis parameters;

(d) Significant organ damage that may be noted at necropsy and/or subsequently seen or confirmed at microscopic examination;

(e) Multi-focal or diffuse necrosis, fibrosis or granuloma formation in vital organs with regenerative capacity;

(f) Morphological changes that are potentially reversible but provide clear evidence of marked organ dysfunction (e.g., severe fatty change in the liver); and,

(g) Evidence of appreciable cell death (including cell degeneration and reduced cell number) in vital organs incapable of regeneration.

A.9.2.8 Effects Considered Not To Support Classification

Effects may be seen in humans and/or animals that do not justify classification. Such effects include, but are not limited to:

(a) Clinical observations or small changes in body weight, food consumption or water intake that may have some toxicological importance but that do not, by themselves, indicate significant toxicity;

(b) Small changes in clinical biochemistry, hematology or urinalysis parameters and/or transient effects, when such changes or effects are of doubtful or of minimal toxicological importance;

(c) Changes in organ weights with no evidence of organ dysfunction;

(d) Adaptive responses that are not considered toxicologically relevant;

(e) Substance-induced species-specific mechanisms of toxicity, i.e., constrained with reasonable certainty to be not relevant for human health, shall not justify classification.

A.9.2.9 Guidance Values To Assist With Classification Based on the Results Obtained From Studies Conducted in Experimental Animals

A.9.2.9.1 In studies conducted in experimental animals, reliance on observation of effects alone, without reference to the duration of experimental exposure and dose/concentration, omits a fundamental concept of toxicology, i.e., all substances are potentially toxic, and what determines the toxicity is a function of the dose/concentration and the duration of exposure. In most studies conducted in experimental animals the test guidelines use an upper limit dose value.

A.9.2.9.2 In order to help reach a decision about whether a substance shall be classified or not, and to what degree it shall be classified (Category 1 vs. Category 2), dose/concentration "guidance values" are provided in Table A.9.1 for consideration of the dose/concentration which has been shown to produce significant health effects. The principal argument for proposing such guidance values is that all chemicals are potentially toxic and there has to be a reasonable dose/concentration above which a degree of toxic effect is acknowledged. Also, repeated-dose studies conducted in experimental animals are designed to produce toxicity at the highest dose used in order to optimize the test objective and so most studies will reveal some toxic effect at least at the highest dose. What is therefore to be decided is not only what effects have been produced, but also at what dose/concentration they were produced and how relevant is that for humans.

A.9.2.9.3 Thus, in animal studies, when significant toxic effects are observed that indicate classification, consideration of the duration of experimental exposure and the dose/concentration at which these effects were seen, in relation to the suggested guidance values, provides useful information to help assess the need to classify (since the toxic effects are a consequence of the hazardous property(ies) and also the duration of exposure and the dose/concentration).

A.9.2.9.4 The decision to classify at all can be influenced by reference to the dose/concentration guidance values at or below which a significant toxic effect has been observed.

A.9.2.9.5 The guidance values refer to effects seen in a standard 90-day toxicity study conducted in rats. They can be used as a basis to extrapolate equivalent guidance values for toxicity studies of greater or lesser duration, using dose/exposure time extrapolation similar to Haber’s rule for inhalation, which states essentially that the effective dose is directly proportional to the exposure concentration and the duration of exposure. The assessment should be done on a case-by-case basis; for example, for a 28-day study the guidance values below would be increased by a factor of three.

A.9.2.9.6 Thus for Category 1 classification, significant toxic effects observed in a 90-day repeated-dose study conducted in experimental animals and seen to occur at or below the (suggested) guidance values (C) as indicated in Table A.9.1 would justify classification:

<table>
<thead>
<tr>
<th>Table A.9.1—GUIDANCE VALUES TO ASSIST IN CATEGORY 1 CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route of exposure</td>
</tr>
<tr>
<td>Oral (rat)</td>
</tr>
<tr>
<td>Dermal (rat or rabbit)</td>
</tr>
<tr>
<td>Inhalation (rat) gas ppmV/6h/day</td>
</tr>
</tbody>
</table>

10/12

1910 OSHA GUIDE

HAZARD COMMUNICATION–31
TABLE A.9.2—GUIDANCE VALUES TO ASSIST IN CATEGORY 2 CLASSIFICATION

<table>
<thead>
<tr>
<th>Route of exposure</th>
<th>Units</th>
<th>Guidance values (dose/concentration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat)</td>
<td>mg/kg body weight/day</td>
<td>10 < C ≤ 100</td>
</tr>
<tr>
<td>Dermal (rat or rabbit)</td>
<td>mg/kg body weight/day</td>
<td>20 < C ≤ 200</td>
</tr>
<tr>
<td>Inhalation (rat) gas</td>
<td>ppmv/6h/day</td>
<td>50 < C ≤ 250</td>
</tr>
<tr>
<td>Inhalation (rat) vapor</td>
<td>mg/liter/6h/day</td>
<td>0.2 < C ≤ 1.0</td>
</tr>
<tr>
<td>Inhalation (rat) dust/mist/fume</td>
<td>mg/liter/6h/day</td>
<td>0.02 < C ≤ 0.2</td>
</tr>
</tbody>
</table>

A.9.2.9.8 The guidance values and ranges mentioned in A.2.9.9.6 and A.9.2.9.7 are intended only for guidance purposes, i.e., to be used as part of the weight of evidence approach, and to assist with decisions about classification. They are not intended as strict demarcation values.

A.9.2.9.9 Thus, it is possible that a specific profile of toxicity occurs in repeat-dose animal studies at a dose/concentration below the guidance value, e.g., <100 mg/kg body weight/day by the oral route, however the nature of the effect, e.g., nephrotoxicity seen only in male rats of a particular strain known to be susceptible to this effect, may result in the decision not to classify. Conversely, a specific profile of toxicity may be seen in animal studies occurring at above a guidance value, e.g., >100 mg/kg body weight/day by the oral route, and in addition there is supplementary information from other sources, e.g., other long-term administration studies, or human case experience, which supports a conclusion that, in view of the weight of evidence, classification is prudent.

A.9.3 Classification Criteria for Mixtures

A.9.3.1 Mixtures are classified using the same criteria as for substances, or alternatively as described below. As with substances, mixtures may be classified for specific target organ toxicity following single exposure, repeated exposure, or both.

A.9.3.2 Classification of Mixtures When Data Are Available for the Complete Mixture

When reliable and good quality evidence from human experience or appropriate studies in experimental animals, as described in the criteria for substances, is available for the mixture, then the mixture shall be classified by weight of evidence evaluation of these data. Care shall be exercised in evaluating data on mixtures, that the dose, duration, observation or analysis, do not render the results inconclusive.

A.9.3.3 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles

A.9.3.3.1 Where the mixture itself has not been tested to determine its specific target organ toxicity, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately characterize the hazards of the mixture, those data shall be used in accordance with the following bridging principles as found in paragraph A.0.5 of this Appendix: Dilution; Batching; Concentration of mixtures; Interpolation within one toxicity category; Substantially similar mixtures; and Aerosols.

A.9.3.4 Classification of Mixtures When Data Are Available for All Ingredients or Only for Some Ingredients of the Mixture

A.9.3.4.1 Where there is no reliable evidence or test data for the specific mixture itself, and the bridging principles cannot be used to enable classification, then classification of the mixture is based on the classification of the ingredient substances. In this case, the mixture shall be classified as a specific target organ toxicant (specific organ specified), following single exposure, repeated exposure, or both when at least one ingredient has been classified as a Category 1 or Category 2 specific target organ toxicant and is present at or above the appropriate cut-off value/concentration limit specified in Table A.9.3 for Category 1 and 2 respectively.

TABLE A.9.3—CUT-OFF VALUE/CONCENTRATION LIMITS OF INGREDIENTS OF A MIXTURE CLASSIFIED AS A SPECIFIC TARGET ORGAN TOXICANT THAT WOULD TRIGGER CLASSIFICATION OF THE MIXTURE AS CATEGORY 1 OR 2

<table>
<thead>
<tr>
<th>Ingredient classified as:</th>
<th>Category 1</th>
<th>Category 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1 Target organ toxicant</td>
<td>≥1.0%</td>
<td>—</td>
</tr>
<tr>
<td>Category 2 Target organ toxicant</td>
<td>—</td>
<td>≥1.0%</td>
</tr>
</tbody>
</table>

A.9.3.4.2 These cut-off values and consequent classifications shall be applied equally and appropriately to both single- and repeated-dose target organ toxicants.

A.9.3.4.3 Mixtures shall be classified for either or both single- and repeated-dose toxicity independently.

A.9.3.4.4 Care shall be exercised when toxicants affecting more than one organ system are combined that the potentiation or synergistic interactions are considered, because certain substances can cause specific target organ toxicity at <1% concentration when other ingredients in the mixture are known to potentiate its toxic effect.

A.10 ASPIRATION HAZARD

A.10.1 Definitions and General and Specific Considerations

A.10.1.1 Aspiration means the entry of a liquid or solid chemical directly through the oral or nasal cavity, or indirectly from vomiting, into the trachea and lower respiratory system.

A.10.1.2 Aspiration toxicity includes severe acute effects such as chemical pneumonia, varying degrees of pulmonary injury or death following aspiration.

A.10.1.3 Aspiration is initiated at the moment of inspiration, in the time required to take one breath, as the causative material lodges at the crossroad of the upper respiratory and digestive tracts in the laryngopharyngeal region. A.10.1.4 Aspiration of a substance or mixture can occur as it is vomited following ingestion. This may have consequences for labeling, particularly where, due to acute toxicity, a recommendation may be considered to induce vomiting after ingestion. However, if the substance/mixture also presents an aspiration toxicity hazard, the recommendation to induce vomiting may need to be modified.

A.10.1.5 Specific Considerations
A.10.1.5.1 The classification criteria refer to kinematic viscosity. The following provides the conversion between dynamic and kinematic viscosity:

\[
\text{Dynamic viscosity (mPa}s) \quad \frac{\text{Density (g/cm}^3\text{)}}{= \text{Kinematic viscosity (mm}^2\text{/s)}}
\]

A.10.1.5.2 Although the definition of aspiration in A.10.1.1 includes the entry of solids into the respiratory system, classification according to (b) in Table A.10.1 for Category 1 is intended to apply to liquid substances and mixtures only.

A.10.1.5.3 Classification of aerosol/mist products.

Aerosol and mist products are usually dispensed in containers such as self-pressurized containers, trigger and pump sprayers. Classification for these products shall be considered if their use may form a pool of product in the mouth, which then may be aspirated. If the mist or aerosol from a pressurized container is fine, a pool may not be formed. On the other hand, if a pressurized container dispenses product in a stream, a pool may be formed that may then be aspirated. Usually, the mist produced by trigger and pump sprayers is coarse and therefore, a pool may be formed that then may be aspirated. When the pump mechanism may be removed and contents are available to be swallowed then the classification of the products should be considered.

A.10.2 Classification Criteria for Substances

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category: Chemicals known to cause human aspiration toxicity hazards or to be regarded as if they cause human aspiration toxicity hazard</td>
<td>A substance shall be classified in Category 1: (a) If reliable and good quality human evidence indicates that it causes aspiration toxicity (See note); or (b) If it is a hydrocarbon and has a kinematic viscosity ≤20.5 mm²/s, measured at 40°C.</td>
</tr>
</tbody>
</table>

Note: Examples of substances included in Category 1 are certain hydrocarbons, terpineol and pine oil.

A.10.3 Classification Criteria for Mixtures

A.10.3.1 Classification When Data Are Available for the Complete Mixture

A mixture shall be classified in Category 1 based on reliable and good quality human evidence.

A.10.3.2 Classification of Mixtures When Data Are Not Available for the Complete Mixture: Bridging Principles

A.10.3.2.1 Where the mixture itself has not been tested to determine its aspiration toxicity, but there are sufficient data on the individual ingredients and similar tested mixtures to adequately characterize the hazard of the mixture, these data shall be used in accordance with the following bridging principles as found in paragraph A.0.5 of this Appendix: Dilution; Blending; Concentration of mixtures; Interpolation within one toxicity category; and Substantially similar mixtures. For application of the dilution bridging principle, the concentration of aspiration toxicants shall not be less than 10%.

A.10.3.3 Classification of Mixtures When Data Are Available for All Ingredients or Only for Some Ingredients of the Mixture

A.10.3.3.1 A mixture which contains ≥10% of an ingredient or ingredients classified in Category 1, and has a kinematic viscosity ≤20.5 mm²/s, measured at 40°C, shall be classified in Category 1.

A.10.3.3.2 In the case of a mixture which separates into two or more distinct layers, one of which contains ≥10% of an ingredient or ingredients classified in Category 1 and has a kinematic viscosity ≤20.5 mm²/s, measured at 40°C, then the entire mixture shall be classified in Category 1.

APPENDIX B TO §1910.1200—PHYSICAL CRITERIA (MANDATORY)

B.1 EXPLOSIVES

B.1.1 Definitions and General Considerations

B.1.1.1 An explosive chemical is a solid or liquid chemical which is in itself capable by chemical reaction of producing gas at such a temperature and pressure and at such a speed as to cause damage to the surroundings.

Pyrotechnic chemicals are included even when they do not evolve gases. A pyrotechnic chemical is a chemical designed to produce an effect by heat, light, sound, gas or smoke or a combination of these as the result of non-detonative self-sustaining exothermic chemical reactions.

An explosive item is an item containing one or more explosive chemicals.

A pyrotechnic item is an item containing one or more pyrotechnic chemicals.

An unstable explosive is an explosive which is thermally unstable and/or too sensitive for normal handling, transport, or use.

An intentional explosive is a chemical or item which is manufactured with a view to producing a practical explosive or pyrotechnic effect.

B.1.1.2 The class of explosives comprises:

(a) Explosive chemicals;

(b) Explosive items, except devices containing explosive chemicals in such quantity or of such a character that their inadvertent or accidental ignition or initiation shall not cause any effect external to the device either by projection, fire, smoke, heat or loud noise; and

(c) Chemicals and items not included under (a) and (b) above which are manufactured with the view to producing a practical explosive or pyrotechnic effect.

B.1.2 Classification Criteria

Chemicals and items of this class shall be classified as unstable explosives or shall be assigned to one of the following six divisions depending on the type of hazard they present:

(a) Division 1.1—Chemicals and items which have a mass explosion hazard (a mass explosion is one which affects almost the entire quantity present virtually instantaneously);

(b) Division 1.2—Chemicals and items which have a projection hazard but not a mass explosion hazard;

(c) Division 1.3—Chemicals and items which have a fire hazard and either a minor blast hazard or a minor projection hazard or both, but not a mass explosion hazard:

(i) Combustion of which gives rise to considerable radiant heat; or

(ii) Which burn one after another, producing minor blast or projection effects or both;

(d) Division 1.4—Chemicals and items which present no significant hazard: chemicals and items which present only a small hazard in the event of ignition or initiation. The effects are largely confined to the package and no projection of fragments of appreciable size or range is to be expected. An external fire shall not cause virtually instantaneous explosion of almost the entire contents of the package;

(e) Division 1.5—Very insensitive chemicals which have a mass explosion hazard: chemicals which have a mass explosion hazard but are so insensitive that there is very little probability of initiation or of transition from burning to detonation under normal conditions;

(f) Division 1.6—Extremely insensitive items which do not have a mass explosion hazard: items which contain only extremely insensitive detonating chemicals and which demonstrate a negligible probability of accidental initiation or propagation.

B.1.3 Additional Classification Considerations

B.1.3.1 Explosives shall be classified as unstable explosives or shall be assigned to one of the six divisions identified in B.1.2 in accordance with the three step procedure in Part I of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6). The first step is to ascertain whether the substance or mixture has explosive properties (Test Series 1). The second step is the acceptance procedure (Test Series 2 to 4) and the third step is the assignment to a hazard division (Test Series 5 to 7). The assessment whether a candidate for "ammunition nitrate emulsion or suspension or gel, intermediate for blasting explosives (ANEF)" is insensitive enough for inclusion as an oxidizing liquid (See B.13) or an oxidizing solid (See B.14) is determined by Test Series 8 tests.

Note: Classification of solid chemicals shall be based on tests performed on the chemical as presented. If, for example, for the purposes of supply or transport, the same chemical is to be presented in a physical form different from that which was tested and which is considered likely to materially alter its performance in a classification test, classification must be based on testing of the chemical in the new form.

HAZARD COMMUNICATION—33

4/13
B.1.3.2 Explosive properties are associated with the presence of certain chemical groups in a molecule which can react to produce very rapid increases in temperature or pressure. The screening procedure in B.1.3.1 is aimed at identifying the presence of such reactive groups and the potential for rapid energy release. If the screening procedure identifies the chemical as a potential explosive, the acceptance procedure (See section 10.3 of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6)) is necessary for classification.

Note: Neither a Series 1 type (a) propagation of detonation test nor a Series 2 type (b) test of sensitivity to detonative shock is necessary if the exothermic decomposition energy of organic materials is less than 800 J/g.

B.1.3.3 If a mixture contains any known explosives, the acceptance procedure is necessary for classification.

B.1.3.4 A chemical is not classified as explosive if:

(a) There are no chemical groups associated with explosive properties present in the molecule. Examples of groups which may indicate explosive properties are given in Table A6.1 in Appendix 6 of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6); or

(b) The substance contains chemical groups associated with explosive properties which include oxygen and the calculated oxygen balance is less than -200. The oxygen balance is calculated for the chemical reaction:

\[C_{x}H_{y}O_{z} + (x + (y/4) - (z/2))O_{2} \rightarrow x \cdot CO_{2} + (y/2) \cdot H_{2}O \]

using the formula: oxygen balance = -1600 \[2x + (y/2) - z \] molecular weight; or

(c) The organic substance or a homogenous mixture of organic substances contains chemical groups associated with explosive properties but the exothermic decomposition energy is less than 500 J/g and the onset of exothermic decomposition is below 750°C (1382 °F). The exothermic decomposition energy may be determined using a suitable calorimetric technique; or

(d) For mixtures of inorganic oxidizing substances with organic material(s), the concentration of the inorganic oxidizing substance is:

(i) Less than 15%, by mass, if the oxidizing substance is assigned to Category 1 or 2;

(ii) Less than 30%, by mass, if the oxidizing substance is assigned to Category 3.

B.2 FLAMMABLE GASES

B.2.1 Definition

Flammable gas means a gas having a flammable range with air at 20°C (68°F) and a standard pressure of 101.3 kPa (14.7 psi).

B.2.2 Classification Criteria

A flammable gas shall be classified in one of the two categories for this class in accordance with Table B.2.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gases, which at 20°C (68°F) and a standard pressure of 101.3 kPa (14.7 psi) are ignitable when in a mixture of 13% or less by volume in air; or (b) have a flammable range with air of at least 12 percentage points regardless of the lower flammable limit.</td>
</tr>
<tr>
<td>2</td>
<td>Gases, other than those of Category 1, which, at 20°C (68°F) and a standard pressure of 101.3 kPa (14.7 psi), have a flammable range while mixed in air.</td>
</tr>
</tbody>
</table>

Note: Aerosols should not be classified as flammable gases. See B.3.

B.2.3 Additional Classification Considerations

Flammability shall be determined by tests or by calculation in accordance with ISO 10156 (incorporated by reference; See §1910.6). Where insufficient data are available to use this method, equivalent validated methods may be used.

B.3 FLAMMABLE AEROSOLS

B.3.1 Definition

Aerosol means any non-refillable receptacle containing a gas compressed, liquefied or dissolved under pressure, and fitted with a release device allowing the contents to be ejected as particles in suspension in a gas, or as a foam, paste, powder, liquid or gas.

B.3.2 Classification Criteria

B.3.2.1 Aerosols shall be considered for classification as flammable if they contain any component which is classified as flammable in accordance with this Appendix, i.e.:

- Flammable liquids (See B.6);
- Flammable gases (See B.2);
- Flammable solids (See B.7).

Note 1: Flammable components do not include pyrophoric, self-heating or water-reactive chemicals.

Note 2: Flammable aerosols do not fall additionally within the scope of flammable gases, flammable liquids, or flammable solids.

B.3.2.2 A flammable aerosol shall be classified in one of the two categories for this class in accordance with Table B.3.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| 1 | Contains ≥ 85% flammable components and the chemical heat of combustion is ≥ 30 kJ/g; or (a) For spray aerosols, in the ignition distance test, ignition occurs at a distance ≥ 75 cm (29.5 in), or (b) For foam aerosols, in the aerosol foam flammability test:
| | (i) The flame height is ≥ 20 cm (7.87 in) and the flame duration ≥ 2 s; or (ii) The flame height is ≥ 4 cm (1.57 in) and the flame duration ≥ 7 s |
| 2 | Contains > 1% flammable components, or the heat of combustion is ≥ 20 kJ/g; and (a) for spray aerosols, in the ignition distance test, ignition occurs at a distance ≥ 15 cm (5.9 in), or in the enclosed space ignition test, the (i) Time equivalent is ≤ 300 s/m²; or (ii) Deflagration density is ≤ 500 g/m³ (b) For foam aerosols, in the aerosol foam flammability test, the flame height is ≥ 4 cm and the flame duration is ≥ 2 s and it does not meet the criteria for Category 1 |

Note: Aerosols not submitted to the flammability classification procedures in this Appendix shall be classified as extremely flammable (Category 1).

B.3.3 Additional Classification Considerations

B.3.3.1 To classify a flammable aerosol, data on its flammable components, on its chemical heat of combustion and, if applicable, the results of the aerosol foam flammability test (for foam aerosols) and of the ignition distance test and enclosed space test (for spray aerosols) are necessary.

B.3.3.2 The chemical heat of combustion (ΔHc), in kilojoules per gram (kJ/g), is the product of the theoretical heat of combustion (ΔHcomb), and a combustion efficiency, usually less than 1.0 (a typical combustion efficiency is 0.95 or 35%).
For a composite aerosol formulation, the chemical heat of combustion is the summation of the weighted heats of combustion for the individual components, as follows:

$$\Delta H_c \text{ (product)} = \sum_{i}^{n} [w_{i%} \times \Delta H_c(i)]$$

Where:
- ΔH_c = chemical heat of combustion (kJ/g);
- $w_{i%}$ = mass fraction of component i in the product;
- $\Delta H_c(i)$ = specific heat of combustion (kJ/g) of component i in the product;

The chemical heats of combustion shall be found in literature, calculated or determined by tests (See ASTM D240-02, ISO 13943, Sections 86.1 to 86.3, and NFPA 30B (Incorporated by reference; See §1910.6)).

B.3.3.3 The Ignition Distance Test, Enclosed Space Ignition Test and Aerosol Foam Flammability Test shall be performed in accordance with subsections 31.4, 31.5 and 31.6 of the of the UN ST/SG/AC.10 (Incorporated by reference; See §1910.8).

B.4 OXIDIZING GASES

B.4.1 Definition

Oxidizing gas means any gas which may, generally by providing oxygen, cause or contribute to the combustion of other material more than air does.
Note: "Gases which cause or contribute to the combustion of other material more than air does" means pure gases or gas mixtures with an oxidizing power greater than 23.5% (as determined by a method specified in ISO 10156 or 10156-2 (incorporated by reference; See §1910.6) or an equivalent testing method.)

B.4.2 Classification Criteria
An oxidizing gas shall be classified in a single category for this class in accordance with Table B.4.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Any gas which may, generally, by providing oxygen, cause or contribute to the combustion of other material more than air does.</td>
</tr>
</tbody>
</table>

B.4.3 Additional Classification Considerations
Classification shall be in accordance with tests or calculation methods as described in ISO 10156 (incorporated by reference; See §1910.6) and ISO 10156-2 (incorporated by reference; See §1910.6).

B.5 GASES UNDER PRESSURE
B.5.1 Definition
Gases under pressure are gases which are contained in a receptacle at a pressure of 200 kPa (29 psi) (gauge) or more, or which are liquefied or liquefied and refrigerated.

They comprise compressed gases, liquefied gases, dissolved gases and refrigerated liquefied gases.

B.5.2 Classification Criteria
Gases under pressure shall be classified in one of four groups in accordance with Table B.5.1:

<table>
<thead>
<tr>
<th>Group</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed gas</td>
<td>A gas which when under pressure is entirely gaseous at -50°C (-58°F), including all gases with a critical temperature 1 between -50°C (-58°F) and 50°C (122°F).</td>
</tr>
</tbody>
</table>
| Liquefied gas | A gas which when under pressure is partially liquid at temperatures above -50°C (-58°F). A distinction is made between:

- (a) High pressure liquefied gas: A gas with a critical temperature 1 between -50°C (-58°F) and +65°C (149°F); and
- (b) Low pressure liquefied gas: A gas with a critical temperature 1 above +65°C (149°F). |
| Refrigerated liquefied gas | A gas which is made partially liquid because of its low temperature. |
| Dissolved gas | A gas which when under pressure is dissolved in a liquid phase solvent. |

1 The critical temperature is the temperature above which a pure gas cannot be liquefied, regardless of the degree of compression.

B.6 FLAMMABLE LIQUIDS
B.6.1 Definition
Flammable liquid means a liquid having a flash point of not more than 93°C (199.4°F).

Flash point means the minimum temperature at which a liquid gives off vapor in sufficient concentration to form an ignitable mixture with air near the surface of the liquid, as determined by a method identified in Section B.6.3.

B.6.2 Classification Criteria
A flammable liquid shall be classified in one of four categories in accordance with Table B.6.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flash point <23°C (73.4°F) and initial boiling point ≤35°C (95°F).</td>
</tr>
</tbody>
</table>

B.6.3 Additional Classification Considerations
The flash point shall be determined in accordance with ASTM D56-05, ASTM D297, ASTM D86, ASTM D92-08 (incorporated by reference; See §1910.6), or any other method specified in GHS Revision 3, Chapter 2.6.

The initial boiling point shall be determined in accordance with ASTM D86-07 or ASTM D1078 (incorporated by reference; See §1910.6).

B.7 FLAMMABLE SOLIDS
B.7.1 Definitions
Flammable solid means a solid which is a readily combustible solid, or which may cause or contribute to fire through friction.

Readily combustible solids are powdered, granular, or pasty chemicals which are dangerous if they can be easily ignited by brief contact with an ignition source, such as a burning match, and if the flame spreads rapidly.

B.7.2 Classification Criteria
B.7.2.1 Powdered, granular or pasty chemicals shall be classified as flammable solids when the time of burning of one or more of the test runs, performed in accordance with the test method described in the UN ST/SG/AC.10 (incorporated by reference; See §1910.6), Part III, sub-section 33.2.1, is less than 45 s or the rate of burning is more than 2.2 mm/s (0.0866 in/s).

B.7.2.2 Powders of metals or metal alloys shall be classified as flammable solids when they can be ignited and the reaction spreads over the whole length of the sample in 10 min or less.

B.7.2.3 Solids which may cause fire through friction shall be classified in this class by analogy with existing entries (e.g., matches) until definitive criteria are established.

B.7.2.4 A flammable solid shall be classified in one of the two categories for this class using Method N.1 as described in Part III, sub-section 33.2.1 of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.7.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| 1 | Burning rate test:
- Chemicals other than metal powders:
 - (a) Wetted zone does not stop fire; and
 - (b) Burning time <45 s or burning rate >2.2 mm/s.
- Metal powders: Burning time ≤5 min.
- Metal powders: Burning time ≤5 min.

2 | Burning rate test:
- Chemicals other than metal powders:
 - (a) Wetted zone stops the fire for at least 4 min; and
 - (b) Burning time <45 s or burning rate >2.2 mm/s.
- Metal powders: Burning time >5 min and ≤10 min.

Note: Classification of solid chemicals shall be based on tests performed on the chemical as presented. If, for example, for the purposes of supply or transport, the same chemical is to be presented in a physical form different from that which was tested and which is considered likely to materially alter

HAZARD COMMUNICATION—35
10/12
its performance in a classification test, classification must be based on testing of the chemical in the new form.

B.8. SELF-REACTIVE CHEMICALS

B.8.1 Definitions

Self-reactive chemicals are thermally unstable liquid or solid chemicals liable to undergo a strongly exothermic decomposition even without participation of oxygen (air). This definition excludes chemicals classified under this section as explosives, organic peroxides, oxidizing liquids or oxidizing solids.

A self-reactive chemical is regarded as possessing explosive properties when in laboratory testing the formulation is liable to detonate, to deflagrate rapidly or to show a violent effect when heated under confinement.

B.8.2 Classification Criteria

B.8.2.1 A self-reactive chemical shall be considered for classification in this class unless:

(a) It is classified as an explosive according to B.1 of this appendix;
(b) It is classified as an oxidizing liquid or an oxidizing solid according to B.13 or B.14 of this appendix, except that a mixture of oxidizing substances which contains 5% or more of combustible organic substances shall be classified as a self-reactive chemical according to the procedure defined in B.8.2.2;
(c) It is classified as an organic peroxide according to B.15 of this appendix;
(d) Its heat of decomposition is less than 300 J/g; or
(e) Its self-accelerating decomposition temperature (SADT) is greater than 75°C (167°F) for a 50 kg (110 lb) package.

B.8.2.2 Mixtures of oxidizing substances, meeting the criteria for classification as oxidizing liquids or oxidizing solids, which contain 5% or more of combustible organic substances and which do not meet the criteria mentioned in B.8.2.1 (a), (c), (d) or (e), shall be subjected to the self-reactive chemicals classification procedure in B.8.2.3. Such a mixture showing the properties of a self-reactive chemical type B to F shall be classified as a self-reactive chemical.

B.8.2.3 Self-reactive chemicals shall be classified in one of the seven categories of "types A to G" for this class, according to the following principles:

(a) Any self-reactive chemical which can detonate or deflagrate rapidly, as packaged, will be defined as self-reactive chemical TYPE A;
(b) Any self-reactive chemical possessing explosive properties and which, as packaged, neither detonates nor deflagrates rapidly, but is liable to undergo a thermal explosion in that package will be defined as self-reactive chemical TYPE B;
(c) Any self-reactive chemical possessing explosive properties when the chemical as packaged cannot detonate or deflagrate rapidly or undergo a thermal explosion will be defined as self-reactive chemical TYPE C;
(d) Any self-reactive chemical which in laboratory testing meets the criteria in (d), (f), (ii), or (iii) will be defined as self-reactive chemical TYPE D;
(i) Detonates partially, does not deflagrate rapidly and shows no violent effect when heated under confinement; or
(ii) Does not detonate at all, deflagrates slowly and shows no violent effect when heated under confinement; or
(iii) Does not detonate or deflagrate at all and shows a medium effect when heated under confinement;
(e) Any self-reactive chemical which, in laboratory testing, neither detonates nor deflagrates at all and shows low or no effect when heated under confinement will be defined as self-reactive chemical TYPE E;
(f) Any self-reactive chemical which, in laboratory testing, neither detonates in the elevated state nor deflagrates at all and shows only a low or no effect when heated under confinement as well as low or no explosive power will be defined as self-reactive chemical TYPE F;
(g) Any self-reactive chemical which, in laboratory testing, neither detonates in the elevated state nor deflagrates at all and shows no effect when heated under confinement or any explosive power, provided that it is thermally stable (self-accelerating decomposition temperature is 60°C (140°F) to 75°C (167°F) for a 50 kg (110 lb) package), and, for liquid mixtures, a diluent having a boiling point greater than or equal to 150°C (302°F) is used for desensitization will be defined as self-reactive chemical TYPE G. If the mixture is not thermally stable or a diluent having a boiling point less than 150°C (302°F) is used for desensitization, the mixture shall be defined as self-reactive chemical TYPE F.

B.8.3 Additional Classification Considerations

B.8.3.1 For purposes of classification, the properties of self-reactive chemicals shall be determined in accordance with test series A to H as described in Part II of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6).

B.8.3.2 Self-accelerating decomposition temperature (SADT) shall be determined in accordance with the UN ST/SG/AC.10, Part II, section 28 (incorporated by reference; See §1910.6).

B.8.3.3 The classification procedures for self-reactive substances and mixtures need not be applied if:

(a) There are no chemical groups present in the molecule associated with explosive or self-reactive properties; examples of such groups are given in Tables A6.1 and A6.2 in the Appendix 6 of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6); or
(b) For a single organic substance or a homogeneous mixture of organic substances, the estimated SADT is greater than 75°C (167°F) or the exothermic decomposition energy is less than 300 J/g. The onset temperature and decomposition energy may be estimated using a suitable calorimetric technique (See 20.3.3.3 in Part II of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6)).

B.9 PYROPHORIC LIQUIDS

B.9.1 Definition

Pyrophoric liquid means a liquid which, even in small quantities, is liable to ignite within five minutes after coming into contact with air.

B.9.2 Classification Criteria

A pyrophoric liquid shall be classified in a single category for this class using test N.3 in Part III, sub-section 33.3.1.5 of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.9.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The liquid ignites within 5 min when added to an inert carrier and exposed to air, or it ignites or chars a filter paper on contact with air within 5 min.</td>
</tr>
</tbody>
</table>

B.9.3 Additional Classification Considerations

The classification procedure for pyrophoric liquids need not be applied when experience in production or handling shows that the chemical does not ignite spontaneously on coming into contact with air at normal temperatures (i.e., the substance is known to be stable at room temperature for prolonged periods of time (days)).

B.10 PYROPHORIC SOLIDS

B.10.1 Definition

Pyrophoric solid means a solid which, even in small quantities, is liable to ignite within five minutes after coming into contact with air.

B.10.2 Classification Criteria

A pyrophoric solid shall be classified in a single category for this class using test N.2 in Part III, sub-section 33.3.1.4 of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.10.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The solid ignites within 5 min of coming into contact with air.</td>
</tr>
</tbody>
</table>

Note: Classification of solid chemicals shall be based on tests performed on the chemical as presented. If, for example, for the purposes of supply or transport, the same chemical is to be presented in a physical form different from that which was tested and which is considered likely to materially alter its performance in a classification test, classification must be based on testing of the chemical in the new form.

B.10.3 Additional Classification Considerations

The classification procedure for pyrophoric solids need not be applied when experience in production or handling shows that the chemical does not ignite spontaneously on coming into contact with air at normal temperatures (i.e., the chemical is known to be stable at room temperature for prolonged periods of time (days)).
A self-heating chemical is a solid or liquid chemical, other than a pyrophoric liquid or solid, which, by reaction with air and without energy supply, is liable to self-heat; this chemical differs from a pyrophoric liquid or solid in that it will ignite only when in large amounts (kilograms) and after long periods of time (hours or days).

Note: Self-heating of a substance or mixture is a process where the gradual reaction of that substance or mixture with oxygen (in air) generates heat. If the rate of heat production exceeds the rate of heat loss, then the temperature of the substance or mixture will rise which, after an induction time, may lead to self-ignition and combustion.

B.11.2 Classification Criteria

B.11.2.1 A self-heating chemical shall be classified in one of the two categories for this class if, in tests performed in accordance with test method N.4 in Part III, sub-section 33.3.1.6 of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6), the result meets the criteria shown in Table B.11.1.

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A positive result is obtained in a test using a 25 mm sample cube at 140°C (284°F).</td>
</tr>
<tr>
<td>2</td>
<td>A negative result is obtained in a test using a 25 mm sample cube at 140°C (284°F), a positive result is obtained in a test using a 100 mm sample cube at 140°C (284°F), and:</td>
</tr>
<tr>
<td></td>
<td>(a) The unit volume of the chemical is more than 3 m³; or</td>
</tr>
<tr>
<td></td>
<td>(b) A positive result is obtained in a test using a 100 mm cube sample at 120°C (248°F) and the unit volume of the chemical is more than 450 liters; or</td>
</tr>
<tr>
<td></td>
<td>(c) A positive result is obtained in a test using a 100 mm cube sample at 100°C (212°F).</td>
</tr>
</tbody>
</table>

B.11.2.2 Chemicals with a temperature of spontaneous combustion higher than 50°C (122°F) for a volume of 27 m³ shall not be classified as self-heating chemicals.

B.11.2.3 Chemicals with a spontaneous ignition temperature higher than 50°C (122°F) for a volume of 450 liters shall not be classified in Category 1 of this class.

B.11.3 Additional Classification Considerations

B.11.3.1 The classification procedure for self-heating chemicals need not be applied if the results of a screening test can be adequately correlated with the classification test and an appropriate safety margin is applied.

B.11.3.2 Examples of screening tests are:

a) The Greer Oven test (VDI guideline 2263, part 1, 1990, Test methods for the Determination of the Safety Characteristics of Dusts) with an onset temperature 80°K above the reference temperature for a volume of 1 t;

B.12 CHEMICALS WHICH, IN CONTACT WITH WATER, EMIT FLAMMABLE GASES

B.12.1 Definition

Chemicals which, in contact with water, emit flammable gases are solids or liquid chemicals which, by interaction with water, are liable to become spontaneously flammable or to give off flammable gases in dangerous quantities.

B.12.2 Classification Criteria

B.12.2.1 A chemical which, in contact with water, emits flammable gases shall be classified in one of the three categories for this class, using test N.5 in Part III, sub-section 33.4.1.4 of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.12.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Any chemical which, in the 1:1 mixture, by mass, of chemical and cellulose tested, spontaneously ignites or the mean pressure rise time of 1:1 mixture, by mass, of chemical and cellulose is less than that of a 1:1 mixture, by mass, of 50% perchloric acid and cellulose;</td>
</tr>
<tr>
<td>2</td>
<td>Any chemical which, in the 1:1 mixture, by mass, of chemical and cellulose tested, exhibits a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, 40% aqueous sodium chlorate solution and cellulose; and the criteria for Category 1 are not met;</td>
</tr>
</tbody>
</table>
B.13.3 Additional Classification Considerations

B.13.3.1 For organic chemicals, the classification procedure for this class shall not be applied if:

(a) The chemical does not contain oxygen, fluorine or chlorine; or
(b) The chemical contains oxygen, fluorine or chlorine and these elements are chemically bonded only to carbon or hydrogen.

B.13.3.2 For inorganic chemicals, the classification procedure for this class shall not be applied if the chemical does not contain oxygen or halogen atoms.

B.13.3.3 In the event of divergence between test results and known experience in the handling and use of chemicals which shows them to be oxidizing, judgments based on known experience shall take precedence over test results.

B.13.3.4 In cases where chemicals generate a pressure rise (too high or too low), caused by chemical reactions not characterizing the oxidizing properties of the chemical, the test described in Part III, sub-section 34.4.2 of the UN ST/SG/AC.10 (incorporated by reference; see § 1910.6) shall be repeated with an inert substance (e.g., diatomite) in place of the cellulose in order to clarify the nature of the reaction.

B.14 OXIDIZING SOLIDS

B.14.1 Definition

Oxidizing solid means a solid which, while in itself is not necessarily combustible, may, generally by yielding oxygen, cause, or contribute to, the combustion of other material.

B.14.2 Classification Criteria

An oxidizing solid shall be classified in one of the three categories for this class using test 0.1 in Part III, sub-section 34.4.1 of the UN ST/SG/AC.10 (incorporated by reference; see § 1910.6), in accordance with Table B.14.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Any chemical which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time less than the mean burning time of a 3:2 mixture (by mass) of potassium bromate and cellulose.</td>
</tr>
<tr>
<td>2</td>
<td>Any chemical which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time equal to or less than the mean burning time of a 2:3 mixture (by mass) of potassium bromate and cellulose and the criteria for Category 1 are not met.</td>
</tr>
<tr>
<td>3</td>
<td>Any chemical which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time equal to or less than the mean burning time of a 3:7 mixture (by mass) of potassium bromate and cellulose and the criteria for Categories 1 and 2 are not met.</td>
</tr>
</tbody>
</table>

Note 1: Some oxidizing solids may present explosion hazards under certain conditions (e.g., when stored in large quantities). For example, some types of ammonium nitrate may give rise to an explosion hazard under extreme conditions and the “Resistance to detonation test” (IOM Code of Safe Practice for Solid BULK Gonsiders, 2005, Annex 3, Test 5) may be used to assess this hazard. When information indicates that an oxidizing solid may present an explosion hazard, it shall be indicated on the Safety Data Sheet.

Note 2: Classification of solid chemicals shall be based on tests performed on the chemical as presented. If, for example, for the purposes of supply or transport, the same chemical is to be presented in a physical form different from that which was tested and which is considered likely to materially alter its performance in a classification test, classification must be based on testing of the chemical in the new form.

B.14.3 Additional Classification Considerations

B.14.3.1 For organic chemicals, the classification procedure for this class shall not be applied if:

(a) The chemical does not contain oxygen, fluorine or chlorine; or
(b) The chemical contains oxygen, fluorine or chlorine and these elements are chemically bonded only to carbon or hydrogen.

B.14.3.2 For inorganic chemicals, the classification procedure for this class shall not be applied if the chemical does not contain oxygen or halogen atoms.

B.14.3.3 In the event of divergence between test results and known experience in the handling and use of chemicals which shows them to be oxidizing, judgments based on known experience shall take precedence over test results.

B.15 ORGANIC PEROXIDES

B.15.1 Definition

Organic peroxide means a liquid or solid organic chemical which contains the bivalent -O- structure and as such is considered a derivative of hydrogen peroxide, where one or both of the hydrogen atoms have been replaced by organic radicals. The term organic peroxide includes organic peroxide mixtures containing at least one organic peroxide. Organic peroxides are thermally unstable chemicals, which may undergo exothermic self-accelerating decomposition. In addition, they may have one or more of the following properties:

(a) Be liable to explosive decomposition;
(b) Burn rapidly;
(c) Be sensitive to impact or friction;
(d) React dangerously with other substances.

B.15.2 Classification Criteria

B.15.2.1 Any organic peroxide shall be considered for classification in this class, unless it contains:

(a) Not more than 1.0% available oxygen from the organic peroxides when containing not more than 1.0% hydrogen peroxide; or
(b) Not more than 0.5% available oxygen from the organic peroxides when containing more than 1.0% but not more than 7.0% hydrogen peroxide.

Note: The available oxygen content (%) of an organic peroxide mixture is given by the formula:

\[16 \times \sum \frac{n_i \times C_i}{m_i} \]

Where:
- \(n_i \) = number of peroxygen groups per mole of organic peroxide \(i \)
- \(C_i \) = concentration (mass %) of organic peroxide \(i \)
- \(m_i \) = molecular mass of organic peroxyde \(i \)

B.15.2.2 Organic peroxides shall be classified in one of the seven categories listed in Table B.15.2.2 for this class, according to the following principles:

(a) Any organic peroxide which, as packaged, can detonate or deflagrate rapidly shall be defined as organic peroxide TYPE A;
(b) Any organic peroxide possessing explosive properties and which, as packaged, neither detonates nor deflagrates rapidly, but is liable to undergo a thermal explosion in that package shall be defined as organic peroxide TYPE B;
(c) Any organic peroxyde possessing explosive properties when the chemical as packaged cannot detonate or deflagrate rapidly but is liable to undergo a thermal explosion in that package shall be defined as organic peroxyde TYPE C;
(d) Any organic peroxide which in laboratory testing meets the criteria in (a), (b), or (c) shall be defined as organic peroxide TYPE D;

(i) Detonates partially, does not deflagrate rapidly and shows no violent effect when heated under confinement; or
(ii) Does not detonate at all, deflagrates slowly and shows no violent effect when heated under confinement; or
1910 OSHA GUIDE

(iii) Does not detonate or deflagrate at all and shows a medium effect when heated under confinement;

(e) Any organic peroxide which, in laboratory testing, neither detonates nor deflagrates at all and shows low or no effect when heated under confinement shall be defined as organic peroxide TYPE E;

(f) Any organic peroxide which, in laboratory testing, neither detonates in the caviated state nor deflagrates at all and shows only a low or no effect when heated under confinement as well as low or no explosive power shall be defined as organic peroxide TYPE F;

(g) Any organic peroxide which, in laboratory testing, neither detonates in the caviated state nor deflagrates at all and shows no effect when heated under confinement nor any explosive power, provided that it is thermally stable (self-accelerating decomposition temperature is 60°C (140°F) or higher for a 50 kg (110 lb) package), and for liquid mixtures, a diluent having a boiling point of not less than 150°C (302°F) is used for desensitization, shall be defined as organic peroxide TYPE G. If the organic peroxide is not thermally stable or a diluent having a boiling point less than 150°C (302°F) is used for desensitization, it shall be defined as organic peroxide TYPE F.

B.15.3 Additional Classification Considerations

B.15.3.1 For purposes of classification, the properties of organic peroxides shall be determined in accordance with test series A to H as described in Part II of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6).

B.15.3.2 Self-accelerating decomposition temperature (SADT) shall be determined in accordance with the UN ST/SG/AC.10 (incorporated by reference; See §1910.6), Part II, section 2B.

B.15.3.3 Mixtures of organic peroxides may be classified as the same type of organic peroxide as that of the most dangerous ingredient. However, as two stable ingredients can form a thermally loss stable mixture, the SADT of the mixture shall be determined.

B.16 CORROSIVE TO METALS

B.16.1 Definition

A chemical which is corrosive to metals means a chemical which by chemical action will materially damage, or even destroy, metals.

B.16.2 Classification Criteria

A chemical which is corrosive to metals shall be classified in a single category for this class, using the test in Part II, sub-section 37.4 of the UN ST/SG/AC.10 (incorporated by reference; See §1910.6), in accordance with Table B.16.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corrosion rate on either steel or aluminium surfaces exceeding 0.25 mm per year at a test temperature of 55°C (131°F) when tested on both materials.</td>
</tr>
</tbody>
</table>

Note: Where an initial test on either steel or aluminium indicates the chemical being tested is corrosive, the follow-up test on the other metal is not necessary.

B.16.3 Additional Classification Considerations

The specimen to be used for the test shall be made of the following materials:

(a) For the purposes of testing steel, steel types S235JR+CR (1.0037 resp.St 37-2), S275J2G3+CR (1.0144 resp.St 44-3), ISO 3574, Unified Numbering System (UNS) G10000, or SAE 1020;

(b) For the purposes of testing aluminium: Non-clad types 7075-T6 or A253-GU-T6.

APPENDIX C TO §1910.1200—ALLOCATION OF LABEL ELEMENTS (MANDATORY)

C.1 The label for each hazardous chemical shall include the product identifier used on the safety data sheet.

C.1.1 The labels on shipped containers shall also include the name, address, and telephone number of the chemical manufacturer, importer, or responsible party.

C.2 The label for each hazardous chemical that is classified shall include the signal word, hazard statement(s), pictogram(s), and precautionary statement(s) specified in C.4 for each hazard class and associated hazard category, except as provided for in C.2.1 through C.2.4.

C.2.1 Precedence of Hazard Information

C.2.1.1 If the signal word "Danger" is included, the signal word "Warning" shall not appear;

C.2.1.2 If the skull and crossbones pictogram is included, the exclamation mark pictogram shall not appear where it is used for acute toxicity;

C.2.1.3 If the corrosive pictogram is included, the exclamation mark pictogram shall not appear where it is used for skin or eye irritation;

C.2.1.4 If the health hazard pictogram is included for respiratory sensitization, the exclamation mark pictogram shall not appear where it is used for skin sensitization or for skin or eye irritation.

C.2.2 Hazard Statement Text

C.2.2.1 The text of all applicable hazard statements shall appear on the label, except as otherwise specified. The information in italics shall be included as part of the hazard statement as provided. For example: "causes damage to organs (cuato all organs affected through prolonged or repeated exposure (state route of exposure if no other routes of exposure cause the hazard)". Hazard statements may be combined where appropriate to reduce the information on the label and improve readability, as long as all of the hazards are conveyed as required.

C.2.2.2 If the chemical manufacturer, importer, or responsible party can demonstrate that all or part of the hazard statement is inappropriate to a specific substance or mixture, the corresponding statement may be omitted from the label.

C.2.3 Pictograms

C.2.3.1 Pictograms shall be in the shape of a square set at a point and shall include a black hazard symbol on a white background with a red frame sufficiently wide to be clearly visible. A square red frame set at a point without a hazard symbol is not a pictogram and is not permitted on the label.
1910 OSHA GUIDE

C.2.3.2. One of eight standard hazard symbols shall be used in each pictogram. The eight hazard symbols are depicted in Figure C.1. A pictogram using the exclamation mark symbol is presented in Figure C.2, for the purpose of illustration.

Figure C.1 – Hazard Symbols and Classes

<table>
<thead>
<tr>
<th>Flame</th>
<th>Flame Over Circle</th>
<th>Exclamation Mark</th>
<th>Exploding Bomb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammables</td>
<td>Oxidizers</td>
<td>Irritant</td>
<td>Explosives</td>
</tr>
<tr>
<td>Self Reactives</td>
<td>Dermal Sensitizer</td>
<td>Dermal Sensitizer</td>
<td>Self Reactives</td>
</tr>
<tr>
<td>Pyrophorics</td>
<td>Acute Toxicity (harmful)</td>
<td>Acute Toxicity (harmful)</td>
<td>Organic Peroxides</td>
</tr>
<tr>
<td>Self-heating</td>
<td>Narcotic Effects</td>
<td>Narcotic Effects</td>
<td></td>
</tr>
<tr>
<td>Emits Flammable Gas</td>
<td>Respiratory Tract irritation</td>
<td>Respiratory Tract irritation</td>
<td></td>
</tr>
<tr>
<td>Organic Peroxides</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corrosion</th>
<th>Gas Cylinder</th>
<th>Health Hazard</th>
<th>Skull and Crossbones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosives</td>
<td>Gases Under Pressure</td>
<td>Carcinogen</td>
<td>Acute Toxicity (severe)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Respiratory Sensitizer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reproductive Toxicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target Organ Toxicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mutagenicility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aspiration Toxicity</td>
<td></td>
</tr>
</tbody>
</table>
1910 OSHA GUIDE

Figure C.2 – Exclamation Mark Pictogram

C.2.3.3 Where a pictogram required by the Department of Transportation under Title 49 of the Code of Federal Regulations appears on a shipped container, the pictogram specified in C.4 for the same hazard shall not appear.

C.2.4 Precautionary Statement Text

C.2.4.1 There are four types of precautionary statements presented, "prevention," "response," "storage," and "disposal." The core part of the precautionary statement is presented in bold print. This is the text, except as otherwise specified, that shall appear on the label. Where additional information is required, it is indicated in plain text.

C.2.4.2 When a backslash or diagonal mark (/) appears in the precautionary statement text, it indicates that a choice has to be made between the separated phrases. In such cases, the chemical manufacturer, importer, or responsible party can choose the most appropriate phrase(s). For example, "Wear protective gloves/protective clothing/ eye protection/face protection" could read "wear eye protection".

C.2.4.3 When three full stops (‘...’) appear in the precautionary statement text, they indicate that all applicable conditions are not listed. For example, in "Use explosion-proof electrical/ventilating/ lighting" * * "equipment", the use of ‘...’ indicates that other equipment may need to be specified. In such cases, the chemical manufacturer, importer, or responsible party can choose the other conditions to be specified.

C.2.4.4 When text in italics is used in a precautionary statement, this indicates specific conditions applying to the use or allocation of the precautionary statement. For example, "Use explosion-proof electrical/ventilating/ lighting" * "equipment" is only required for flammable solids "if dust clouds can occur". Text in italics is intended to be an explanatory, conditional note and is not intended to appear on the label.

C.2.4.5 Where square brackets ([]) appear around text in a precautionary statement, this indicates that the text in square brackets is not appropriate in every case and should be used only in certain circumstances. In these cases, conditions for use explaining when the text should be used are provided. For example, one precautionary statement states: "[In case of inadequate ventilation] wear respiratory protection." This statement is given with the condition for use "[...text in square brackets may be used if additional information is provided with the chemical at the point of use that explains what type of ventilation would be adequate for safe use]." This means that, if additional information is provided with the chemical explaining what type of ventilation would be adequate for safe use, the text in square brackets should be used and the statement would read: "In case of inadequate ventilation wear respiratory protection." However, if the chemical is supplied without such ventilation information, the text in square brackets should not be used, and the precautionary statement should read: "Wear respiratory protection."

C.2.4.6 Precautionary statements may be combined or consolidated to save label space and improve readability. For example, "Keep away from heat, sparks and open flame." "Store in a well-ventilated place" and "Keep cool" can be combined to read "Keep away from heat, sparks and open flame and store in a cool, well-ventilated place."

C.2.4.7 In most cases, the precautionary statements are independent (e.g., the phrases for explosive hazards do not modify those related to certain health hazards, and products that are classified for both hazard classes shall bear appropriate precautionary statements for both). Where a chemical is classified for a number of hazards, and the precautionary statements are similar, the most stringent shall be included on the label (this will be applicable mainly to preventive measures). An order of precedence may be imposed by the chemical manufacturer, importer or responsible party in situations where phrases concern "Response." Rapid action may be crucial. For example, if a chemical is carcinogenic and acutely toxic, rapid action may be crucial, and first aid measures for acute toxicity will take precedence over those for long-term effects. In addition, medical attention to delayed health effects may be required in cases of incidental exposure, even if not associated with immediate symptoms of intoxication.

C.2.4.8 If the chemical manufacturer, importer, or responsible party can demonstrate that a precautionary statement is inappropriate to a specific substance or mixture, the precautionary statement may be omitted from the label.

C.3 Supplementary Hazard Information

C.3.1 To ensure that non-standardized information does not lead to unnecessarily wide variation or undermine the required information, supplementary information on the label is limited to when it provides further detail and does not contradict or cast doubt on the validity of the standardized hazard information.

C.3.2 Where the chemical manufacturer, importer, or distributor chooses to add supplementary information on the label, the placement of supplemental information shall not impede identification of information required by this section.

C.3.3 Where an ingredient with unknown acute toxicity is used in a mixture at a concentration ≥1%, and the mixture is not classified based on testing of the mixture as a whole, a statement that 5% of the mixture consists of ingredient(s) of unknown acute toxicity is required on the label.
1910 OSHA GUIDE

C.4 REQUIREMENTS FOR SIGNAL WORDS, HAZARD STATEMENTS, PICTOGRAMS, AND PRECAUTIONARY STATEMENTS

C.4.1 ACUTE TOXICITY – ORAL
(Classified in Accordance with Appendix A.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Fatal if swallowed</td>
</tr>
<tr>
<td>2</td>
<td>Danger</td>
<td>Fatal if swallowed</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash ... thoroughly after handling, ... Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling. Do not eat, drink or smoke when using this product.</td>
<td>If swallowed: Immediately call a poison center/dtoctor/... ... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice. Specific treatment (see ... on this label) ... Reference to supplemental first aid instruction. - if immediate administration of antidote is required:</td>
<td>Store locked up.</td>
<td>Dispose of contents/container to... ... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td>Rinse mouth.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.1 ACUTE TOXICITY – ORAL (CONTINUED)
(Classified in Accordance with Appendix A.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Danger</td>
<td>Toxic if swallowed</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash ... thoroughly after handling, ... Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling. Do not eat, drink or smoke when using this product.</td>
<td>If swallowed: Immediately call a poison center/dtoctor/... ... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice. Specific treatment (see ... on this label) ... Reference to supplemental first aid instruction. - if immediate administration of antidote is required:</td>
<td>Store locked up.</td>
<td>Dispose of contents/container to... ... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td>Rinse mouth.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.4.1 ACUTE TOXICITY – ORAL (CONTINUED)
(Classified in Accordance with Appendix A.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Warning</td>
<td>Harmful if swallowed</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash ... thoroughly after handling, ... Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling.</td>
<td>If swallowed: Call a poison center/doctor/... if you feel unwell, ... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice. Rinse mouth.</td>
<td>Dispose of contents/container to... ... in accordance with local/regional/national/international regulations (to be specified).</td>
<td></td>
</tr>
<tr>
<td>Do not eat, drink or smoke when using this product.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.2 ACUTE TOXICITY - DERMAL
(Classified in Accordance with Appendix A.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Fatal in contact with skin</td>
</tr>
<tr>
<td>2</td>
<td>Danger</td>
<td>Fatal in contact with skin</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not get in eyes, on skin, or on clothing. Wash ... thoroughly after handling, ... Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling. Do not eat, drink or smoke when using this product. Wear protective gloves/protective clothing. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td>If on skin: Wash with plenty of water/... ... Chemical manufacturer, importer, or distributor to specify a cleansing agent if appropriate, or may recommend an alternative agent in exceptional cases if water is clearly inappropriate. Immediately call a poison center/doctor/... ... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice. Specific treatment (see ... on this label) ... Reference to supplemental first aid instruction.</td>
<td>Store locked up.</td>
<td>Dispose of contents/container to... ... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

HAZARD COMMUNICATION-43

10/12
1910 OSHA GUIDE

C.4.2 ACUTE TOXICITY – DERMAL (CONTINUED)
(Classified in Accordance with Appendix A.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Danger</td>
<td>Toxic in contact with skin</td>
</tr>
</tbody>
</table>

Pictogram
Skull and crossbones

<table>
<thead>
<tr>
<th>Precautionary statement</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear protective gloves/protective clothing. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td>If on skin: Wash with plenty of water/... Chemical manufacturer, importer, or distributor may specify a cleansing agent if appropriate, or may recommend an alternative agent in exceptional cases if water is clearly inappropriate. Call a poison center/doctor/... if you feel unwell. Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice. Specific treatment (see ... on this label) Reference to supplemental first aid instruction. If necessary, such as specific cleaning agent is advised. Take off immediately all contaminated clothing and wash it before reuse.</td>
<td>Store locked up.</td>
<td>Dispose of contents/container in... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
</tbody>
</table>
C.4.2 ACUTE TOXICITY – DERMAL (CONTINUED)
(Classified in Accordance with Appendix A.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Warning</td>
<td>Harmful in contact with skin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear protective gloves/protection clothing</td>
<td>... Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td>If on skin: Wash with plenty of water/...</td>
<td>... Reference to supplemental first aid instruction.</td>
<td>... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td>Call a poison center/doctor/... if you feel unwell.</td>
<td>... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice.</td>
<td>Specific treatment (see ... on this label)</td>
<td>... Reference to supplemental first aid instruction.</td>
<td></td>
</tr>
<tr>
<td>Take off contaminated clothing and wash it before reuse.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.3 ACUTE TOXICITY – INHALATION
(Classified in Accordance with Appendix A.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Fatal if inhaled</td>
</tr>
<tr>
<td>2</td>
<td>Danger</td>
<td>Fatal if inhaled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not inhale dust/fume/gas/mist/ vapors/spray.</td>
<td>... Chemical manufacturer, importer, or distributor to specify applicable conditions.</td>
<td>If inhaled: Remove person to fresh air and keep comfortable for breathing.</td>
<td>... Reference to supplemental first aid instruction.</td>
<td>... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td>Use only outdoors or in a well-ventilated area.</td>
<td></td>
<td>Immediately call a poison center/doctor/...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In case of inadequate ventilation</td>
<td></td>
<td>... Chemical manufacturer, importer, or distributor to specify equipment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text in smaller brackets may be used if additional information is provided with the chemical at the point of use that explains what type of ventilation would be adequate for such use.</td>
<td></td>
<td>Specific treatment is urgent (see ... on this label)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store in a well-ventilated place. Keep container tightly closed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If product is volatile, use a gas tight atmosphere.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store locked up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.4.3 ACUTE TOXICITY – INHALATION (CONTINUED)
(Classified in Accordance with Appendix A.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Danger</td>
<td>Toxic if inhaled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
</tr>
</thead>
</table>
| Avoid breathing dust/fume/gas/mist/vapors/spray. Chemical manufacturer, importer, or distributor to specify applicable conditions. Use only outdoors or in a well-ventilated area.

If inhaled:
- Remove person to fresh air and keep comfortable for breathing.
- Call a poison center/doctor...
 - Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice.

Specific treatment (see ... on this label)
- Reference to supplemental first aid instruction.
- If necessary, specific measures are required.

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store in a well-ventilated place. Keep container tightly closed. If product is volatile or to generate hazardous atmosphere, store locked up.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispose of container to... in accordance with local/regional/national/international regulations (to be specified).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazard category 4

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Warning</td>
<td>Harmful if inhaled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
</tr>
</thead>
</table>
| Avoid breathing dust/fume/gas/mist/vapors/spray. Chemical manufacturer, importer, or distributor to specify applicable conditions. Use only outdoors or in a well-ventilated area.

If inhaled:
- Remove person to fresh air and keep comfortable for breathing.
- Call a poison center/doctor/...if you feel unwell.
 - Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice.

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store in a well-ventilated place. Keep container tightly closed. If product is volatile or to generate hazardous atmosphere, store locked up.</td>
<td></td>
</tr>
<tr>
<td>Dispose of container to... in accordance with local/regional/national/international regulations (to be specified).</td>
<td></td>
</tr>
</tbody>
</table>
1910 OSHA GUIDE

C.4.4 SKIN CORROSION/IRRITATION
(Classified in Accordance with Appendix A.2)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A to 1C</td>
<td>Danger</td>
<td>Causes severe skin burns and eye damage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not breathe dusts or mists. If inhaled, get fresh air. Avoid breathing dusts or mists. If inhaled, get fresh air. If inhaled, get fresh air.</td>
</tr>
<tr>
<td>Wash thoroughly after handling. Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling.</td>
</tr>
<tr>
<td>Wear protective gloves/protective clothing/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>If swallowed: Rinse mouth. Do NOT induce vomiting. If on skin or hair: Take off immediately all contaminated clothing, Rinse skin with water/shower. Wash contaminated clothing before reuse. If inhaled: Remove person to fresh air and keep comfortable for breathing. Immediately call a poison center/doctor... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice. Specific treatment (see... on this label) Reference to supplemental first aid instruction. Chemical manufacturer, importer, or distributor may specify a cleansing agent if appropriate, or may recommend an alternative agent in exceptional cases if water is clearly inappropriate. If skin irritation occurs; Get medical advice/attention. Take off contaminated clothing and wash it before reuse.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store locked up.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.4 SKIN CORROSION/IRRITATION (CONTINUED)
(Classified in Accordance with Appendix A.2)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Warning</td>
<td>Causes skin irritation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash... thoroughly after handling. Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling.</td>
</tr>
<tr>
<td>Wear protective gloves. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>If on skin: Wash with plenty of water... Chemical manufacturer, importer, or distributor may specify a cleansing agent if appropriate, or may recommend an alternative agent in exceptional cases if water is clearly inappropriate. Specific treatment (see... on this label) Reference to supplemental first aid instruction. Chemical manufacturer, importer, or distributor may specify a cleansing agent if appropriate. If skin irritation occurs; Get medical advice/attention. Take off contaminated clothing and wash it before reuse.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1910 OSHA GUIDE

C.4.5 EYE DAMAGE/IRRITATION
(Classified in Accordance with Appendix A.3)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Causes serious eye damage</td>
</tr>
</tbody>
</table>

Precautionary statements:

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td>If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a poison center/doctor/... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.5 EYE DAMAGE/IRRITATION (CONTINUED)
(Classified in Accordance with Appendix A.3)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>Warning</td>
<td>Causes serious eye irritation</td>
</tr>
</tbody>
</table>

Precautionary statements:

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash ... thoroughly after handling. ... Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling.</td>
<td>If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td>If eye irritation persists: Get medical advice/attention.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.4.5 EYE DAMAGE/IRRITATION (CONTINUED)
(Classified in Accordance with Appendix A.3)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Warning</td>
<td>Causes eye irritation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash ... thoroughly after handling, ... Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling.</td>
<td>If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.6 SENSITIZATION - RESPIRATORY
(Classified in Accordance with Appendix A.4)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (including both sub-categories 1A and 1B)</td>
<td>Danger</td>
<td>May cause allergy or asthma symptoms or breathing difficulties if inhaled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
</table>
| Avoid breathing dust/fume/gas/vapor/inhalable matter. Chemical manufacturer, importer, or distributor to specify equipment.
 [In case of inadequate ventilation] Call a poison center/doctor/... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice. | If inhaled: If breathing is difficult, remove person to fresh air and keep comfortable for breathing. If experiencing respiratory symptoms: Call a poison center/doctor/... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice. | | | |
C.4.7 SENSITIZATION - SKIN
(Classified in Accordance with Appendix A.4)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (including both sub-categories 1A and 1B)</td>
<td>Warning</td>
<td>May cause an allergic skin reaction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid breathing dust/fume/gas/mist/vapors/spray. Chemical manufacturer, importer, or distributor to specify applicable conditions. Contaminated work clothing must not be allowed out of the workplace. Wear protective gloves. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td>If skin: Wash with plenty of water... Chemical manufacturer, importer, or distributor may specify a cleansing agent if appropriate, or may recommend an alternative agent in exceptional cases if water is clearly inappropriate.</td>
<td>Replace.</td>
<td>Dispose of contents/container in... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td>Specific treatment (see... on this label) Reference to supplemental first aid instruction.</td>
<td>If skin irritation or rash occurs: Get medical advice/attention. Specific treatment (see... on this label) Reference to supplemental first aid instruction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash contaminated clothing before reuse.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.8 GERM CELL MUTAGENICITY
(Classified in Accordance with Appendix A.5)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
</table>
| 1A and 1B | Danger | May cause genetic defects ...
| 2 | Warning | Suspected of causing genetic defects ...

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Wear protective gloves/protective clothing/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment, as required.</td>
<td>If exposed or concerned: Get medical advice/attention.</td>
<td>Store locked up.</td>
<td>Dispose of contents/container in... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
</tbody>
</table>

HAZARD COMMUNICATION–50

10/12
1910 OSHA GUIDE

C.4.9 CARCINOGENICITY
(Classified in Accordance with Appendix A.6)

- **Hazard category**: 1A and 1B
 Signal word: Danger
 Hazard statement: May cause cancer.
- **Hazard category**: 2
 Signal word: Warning
 Hazard statement: Suspected of causing cancer.

Note: Route of exposure if no other route of exposure cause the hazard.

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain special instructions before use.</td>
<td>Obtain special instructions before use.</td>
<td>If exposed or concerned: Get medical advice/attention.</td>
<td>Store locked up.</td>
<td>Dispose of contents/container to... in accordance with local/regional/national/international regulations to be specified.</td>
</tr>
<tr>
<td>Do not handle until safety precautions have been read and understood.</td>
<td>Do not handle until safety precautions have been read and understood.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear protective gloves/protective clothing/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment, as required.</td>
<td>Wear protective gloves/protective clothing/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment, as required.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If a Category 2 carcinogen ingredient is present in the mixture at a concentration between 0.1% and 1%, information is required on the SDS for a product; however, a label warning is optional. If a Category 2 carcinogen ingredient is present in the mixture at a concentration of ≥ 1%, both an SDS and a label is required and the information must be included on each.

C.4.10 TOXIC TO REPRODUCTION
(Classified in Accordance with Appendix A.7)

- **Hazard category**: 1A and 1B
 Signal word: Danger
 Hazard statement: May damage fertility or the unborn child.
- **Hazard category**: 2
 Signal word: Warning
 Hazard statement: Suspected of damaging fertility or the unborn child.

Note: Specific effect if known.

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain special instructions before use.</td>
<td>Obtain special instructions before use.</td>
<td>If exposed or concerned: Get medical advice/attention.</td>
<td>Store locked up.</td>
<td>Dispose of contents/container to... in accordance with local/regional/national/international regulations to be specified.</td>
</tr>
<tr>
<td>Do not handle until safety precautions have been read and understood.</td>
<td>Do not handle until safety precautions have been read and understood.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear protective gloves/protective clothing/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment, as required.</td>
<td>Wear protective gloves/protective clothing/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment, as required.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.4.10 TONIC TO REPRODUCTION (CONTINUED)
(Classified in Accordance with Appendix A.7)
(EFFECTS ON OR VIA LACTATION)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>No designated number</td>
<td>No signal word</td>
<td>May cause harm to breast-fed children</td>
</tr>
</tbody>
</table>

(See Table A.7.1 in Appendix A.7)

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain special instructions before use.</td>
<td>If exposed or concerned: Get medical advice/attention.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do not breathe dusts or mists.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* If inhaled particles of dusts or mists may occur during use.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoid contact during pregnancy/while nursing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash ... thoroughly after handling.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do not eat, drink or smoke when using this product.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.11 SPECIFIC TARGET ORGAN TOXICITY (Single Exposure)
(Classified in Accordance with Appendix A.8)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Causes damage to organs «...» «...» «...» «...» For state all organs affected if known «...» (Note route of exposure if no other routes of exposure cause the hazard)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not breathe dust/fume/gas/mist/vapors/spray.</td>
<td>If exposed: Call a poison center/doctor...</td>
<td>Store locked up.</td>
<td>Dispose of contents/container to...</td>
</tr>
<tr>
<td>Chemical manufacturer, importer, or distributor to specify applicable conditions.</td>
<td>... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice.</td>
<td></td>
<td>in accordance with local/regional/international regulations (to be specified).</td>
</tr>
<tr>
<td>Wash ...thoroughly after handling.</td>
<td>Specific treatment (see ... on this label)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling.</td>
<td>Reference to supplemental first aid instruction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do not eat, drink or smoke when using this product.</td>
<td>* If immediate measures are required...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.4.11 SPECIFIC TARGET ORGAN TOXICITY (Single Exposure) (CONTINUED)
(Classified in Accordance with Appendix A.8)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Warning</td>
<td>May cause damage to organs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routes of exposure: inhaled, ingested.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routes of exposure: cause the hazard.</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not breathe dust/fume/gas/mist/vapors/spray. Chemical manufacturer, importer, or distributor to specify applicable conditions. Wash ... thoroughly after handling. Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling. Do not eat, drink or smoke when using this product.</td>
<td>If exposed or concerned: Call a poison center/doctor/... Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice.</td>
<td>Store locked up.</td>
<td>Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
</tbody>
</table>

C.4.11 SPECIFIC TARGET ORGAN TOXICITY (Single Exposure) (CONTINUED)
(Classified in Accordance with Appendix A.8)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Warning</td>
<td>May cause respiratory irritation; or May cause drowsiness or dizziness</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid breathing dust/fume/gas/mist/vapors/spray. Chemical manufacturer, importer, or distributor to specify applicable conditions. Use only outdoors or in a well-ventilated area.</td>
<td>If inhaled: Remove person to fresh air and keep comfortable for breathing. Call a poison center/doctor/... If you feel unwell. Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice.</td>
<td>Store in a well-ventilated place. Keep container tightly closed.</td>
<td>Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.4.12 SPECIFIC TARGET ORGAN TOXICITY (Repeated Exposure)
(Classified in Accordance with Appendix A.9)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Causes damage to organs, "..." through prolonged or repeated exposure "..." state all organs affected if known, "..." state route of exposure if no other routes of exposure cause the hazard.</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not breathe dust/fume/gas/mist/vapors/spray. Chemical manufacturer, importer, or distributor to specify applicable conditions. Wash ... thoroughly after handling. Chemical manufacturer, importer, or distributor to specify parts of the body to be washed after handling. Do not eat, drink or smoke when using this product.</td>
<td>Get medical advice/attention if you feel unwell.</td>
<td>Dispose of contents/container to... ... in accordance with local/regional/national/international regulations (to be specified).</td>
<td></td>
</tr>
</tbody>
</table>

C.4.12 SPECIFIC TARGET ORGAN TOXICITY (Repeated Exposure) (CONTINUED)
(Classified in Accordance with Appendix A.9)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Warning</td>
<td>May cause damage to organs "..." through prolonged or repeated exposure "..." state all organs affected if known, "..." state route of exposure if no other routes of exposure cause the hazard.</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not breathe dust/fume/gas/mist/vapors/spray. Chemical manufacturer, importer, or distributor to specify applicable conditions.</td>
<td>Get medical advice/attention if you feel unwell.</td>
<td></td>
<td>Dispose of contents/container to... ... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
</tbody>
</table>
1910 OSHA GUIDE

C.4.13 ASPIRATION HAZARD
(Classified in Accordance with Appendix A.10)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>May be fatal if swallowed and enters airways</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If swallowed: Immediately call a poison center/doctor...
...Chemical manufacturer, importer, or distributor to specify the appropriate source of emergency medical advice.
Do NOT induce vomiting.</td>
<td>Store locked up.</td>
<td>Dispose of contents/container in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
</tbody>
</table>

C.4.14 EXPLOSIVES
(Classified in Accordance with Appendix B.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable explosive</td>
<td>Danger</td>
<td>Unstable explosive</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain special instructions before use.
Do not handle until all safety precautions have been read and understood.
Wear personal protective equipment/face protection.
Chemical manufacturer, importer, or distributor to specify type of equipment, as required.</td>
<td>Explosion risk in case of fire.
Do NOT fight fire when fire reaches explosives.
Evacuate area.</td>
<td>Store in accordance with local/regional/national/international regulations (to be specified).</td>
<td>Dispose of contents/container in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
</tbody>
</table>
1910 OSHA GUIDE

C.4.14 EXPLOSIVES (CONTINUED)
(Classified in Accordance with Appendix B.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 1.1</td>
<td>Danger</td>
<td>Explosive; mass explosion hazard</td>
</tr>
<tr>
<td>Division 1.2</td>
<td>Danger</td>
<td>Explosive; severe projection hazard</td>
</tr>
<tr>
<td>Division 1.3</td>
<td>Danger</td>
<td>Explosive; fire, blast or projection hazard</td>
</tr>
</tbody>
</table>

Precautionary statements:

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat/sparks/open flames/hot surfaces. - No-smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition source(s).</td>
<td>In case of fire: evacuate area. Explosion risk in case of fire. Do NOT fight fire when fire reaches explosives.</td>
<td>Store ... in accordance with local/regional/national/international regulations (to be specified).</td>
<td>Dispose of contents/container to ... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td>Keep wetted with... ... Chemical manufacturer, importer, or distributor to specify appropriate material.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- If drying out incurs explosion hazard, except as needed for manufacturing or operating processes (e.g., attrition/blending, etc.).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground/bond container and receiving equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- If the explosive is detonation-sensitive.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do not subject to grinding/shock/.../friction. ... Chemical manufacturer, importer, or distributor to specify applicable rough handling.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Unpackaged explosives or explosives repacked in packaging other than the original or similar packaging shall have the label elements assigned to Division 1.1 unless the hazard is shown to correspond to one of the hazard categories in Appendix B.1, in which case the corresponding symbol, signal word and/or the hazard statement shall be assigned.
Hazard category
Division 1.4

Signal word
Warning

Hazard statement
Fire or projection hazard

<table>
<thead>
<tr>
<th>Precautionary statement</th>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition sources(s).</td>
<td>In case of fire: Evacuate area. Explosion risk in case of fire. - unless explosives are 1.4S ammunition and components thereof.</td>
<td>Store ... in accordance with local/regional/ national/international regulations (to be specified).</td>
<td>Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).</td>
<td></td>
</tr>
<tr>
<td>Ground/bond container and receiving equipment. - if the explosive is electrostatically sensitive.</td>
<td>Do NOT fight fire when fire reaches explosives.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do not subject to grinding/shock/...friction. Chemical manufacturer, importer, or distributor to specify applicable rough handling.</td>
<td>Fight fire with normal precautions from a reasonable distance - unless explosives are 1.4S ammunition and components thereof.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Unpackaged explosives or explosives repacked in packagings other than the original or similar packaging shall have the label elements assigned to Division 1.4 unless the hazard is shown to correspond to one of the hazard categories in Appendix B.1, in which case the corresponding symbol, signal word and/or the hazard statement shall be assigned.

1. Except no pictogram is required for explosives that are 1.4S small arms ammunition and components thereof. Labels for 1.4S small arms ammunition and components shall include appropriate precautionary statements.
C.4.14 EXPLOSIVES (CONTINUED)
(Classified in Accordance with Appendix B.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
<th>Precautionary statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 1.5</td>
<td>Danger</td>
<td>May cause explosion</td>
<td>Keep away from heat, sparks, open flames, hot surfaces. - No smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition sources.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Keep wetted with...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>... Chemical manufacturer, importer, or distributor to specify appropriate material.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- If drying out increases explosion hazard, except to avoid in manufacturing or operating processes (e.g., nitrocellulose).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ground/bond container and receiving equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- If the explosive is electrostatically sensitive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Do not subject to friction/shock/.../Bristling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>... Chemical manufacturer, importer, or distributor to specify applicable rough handling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wear face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In case of fire: Evacuate area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Explosion risk in case of fire.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Do NOT fight fire when fire reaches explosives.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Store ... in accordance with local/regional/national/international regulations to be specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dispose of contents/container to ... in accordance with local/regional/national/international regulations to be specified.</td>
</tr>
</tbody>
</table>

Note: Unpackaged explosives or explosives repacked in packagings other than the original or similar packaging shall have the label elements assigned to Division 1.1 unless the hazard is shown to correspond to one of the hazard categories in Appendix B.1, in which case the corresponding symbol, signal word and/or the hazard statement shall be assigned.

C.4.14 EXPLOSIVES (CONTINUED)
(Classified in Accordance with Appendix B.1)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
<th>Precautionary statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 1.6</td>
<td>No signal</td>
<td>No hazard statement</td>
<td>None assigned.</td>
</tr>
</tbody>
</table>
C.4.15 FLAMMABLE GASES
(Classified in Accordance with Appendix B.2)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Extremely flammable gas</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heated open flames/hot surfaces. No smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition source(s).</td>
<td>Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.</td>
<td>Store in well-ventilated place.</td>
<td></td>
</tr>
</tbody>
</table>

C.4.15 FLAMMABLE GASES (CONTINUED)
(Classified in Accordance with Appendix B.2)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Warning</td>
<td>Flammable gas</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heated open flames/hot surfaces. No smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition source(s).</td>
<td>Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.</td>
<td>Store in well-ventilated place.</td>
<td></td>
</tr>
</tbody>
</table>

C.4.16 FLAMMABLE AEROSOLS
(Classified in Accordance with Appendix B.3)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Extremely flammable aerosol</td>
</tr>
<tr>
<td>2</td>
<td>Warning</td>
<td>Flammable aerosol</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heated open flames/hot surfaces. No smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition source(s). Do not spray on an open flame or other ignition source. Pressurized container: Do not pierce or burn, even after use.</td>
<td>Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HAZARD COMMUNICATION—59

10/12
1910 OSHA GUIDE

C.4.17 OXIDIZING GASES
(Classified in Accordance with Appendix B.4)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>May cause or intensify fire; oxidizer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention</td>
</tr>
<tr>
<td>Keep away from clothing/.../combustible materials, ...Chemical manufacturer, importer, or distributor to specify other incompatible materials.</td>
</tr>
<tr>
<td>Keep reduction valves/valves and fittings free from oil and grease.</td>
</tr>
<tr>
<td>Response</td>
</tr>
<tr>
<td>In case of fire: Stop leak if safe to do so.</td>
</tr>
<tr>
<td>Storage</td>
</tr>
<tr>
<td>Store in well-ventilated place.</td>
</tr>
</tbody>
</table>

C.4.18 GASES UNDER PRESSURE
(Classified in Accordance with Appendix B.5)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed gas</td>
<td>Warning</td>
<td>Contains gas under pressure; may explode if heated</td>
</tr>
<tr>
<td>Liquefied gas</td>
<td>Warning</td>
<td>Contains gas under pressure; may explode if heated</td>
</tr>
<tr>
<td>Dissolved gas</td>
<td>Warning</td>
<td>Contains gas under pressure; may explode if heated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Response</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Storage</td>
</tr>
<tr>
<td>Protect from sunlight. Store in a well-ventilated place.</td>
</tr>
</tbody>
</table>

C.4.18 GASES UNDER PRESSURE (CONTINUED)
(Classified in Accordance with Appendix B.5)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerated liquefied gas</td>
<td>Warning</td>
<td>Contains refrigerated gas; may cause cryogenic burns or injury</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention</td>
</tr>
<tr>
<td>Wear cold insulating gloves/face shield/eye protection.</td>
</tr>
<tr>
<td>Thaw frozen parts with lukewarm water. Do not rub affected area. Get immediate medical advice/attention.</td>
</tr>
<tr>
<td>Response</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Storage</td>
</tr>
<tr>
<td>Store in well-ventilated place.</td>
</tr>
</tbody>
</table>
1910 OSHA GUIDE

C.4.19 FLAMMABLE LIQUIDS
(Classified in Accordance with Appendix B.6)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Extremely flammable liquid and vapor</td>
</tr>
<tr>
<td>2</td>
<td>Danger</td>
<td>Highly flammable liquid and vapor</td>
</tr>
<tr>
<td>3</td>
<td>Warning</td>
<td>Flammable liquid and vapor</td>
</tr>
</tbody>
</table>

Precautionary statements

Prevention
- Keep away from heat, sparks, open flames or hot surfaces. - No smoking.
- Chemical manufacturer, importer, or distributor to specify applicable ignition sources.

- Keep container tightly closed.

- Ground/bond container and receiving equipment
 - *If explosive atmospheres are encountered*
 - *If product is volatile, use gas detectors and monitors.*

- Use explosion-proof electrical/ventilating/lighting/equipment.
 - Chemical manufacturer, importer, or distributor to specify other equipment.

- Use only non-sparking tools.

- Take precautionary measures against static discharge.

- Wear protective gloves/eye protection/face protection
 - Chemical manufacturer, importer, or distributor to specify type of equipment.

Response
- If on skin (or hair): Take off immediately all contaminated clothing, rinse skin with water/shower.

- In case of fire: Use ... to extinguish.
 - Chemical manufacturer, importer, or distributor to specify appropriate media.
 - If water increases risk.

Storage
- Store in a well-ventilated place. Keep cool.

Disposal
- Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).

C.4.19 FLAMMABLE LIQUIDS (CONTINUED)
(Classified in Accordance with Appendix B.6)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Warning</td>
<td>Combustible liquid</td>
</tr>
</tbody>
</table>

Precautionary statements

Prevention
- Keep away from flames and hot surfaces. - No smoking.

- Wear protective gloves/eye protection/face protection
 - Chemical manufacturer, importer, or distributor to specify type of equipment.

Response
- In case of fire: Use ... to extinguish.
 - Chemical manufacturer, importer, or distributor to specify appropriate media.
 - If water increases risk.

Storage
- Store in a well-ventilated place. Keep cool.

Disposal
- Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).
C.4.20 FLAMMABLE SOLIDS
(Classified in Accordance with Appendix B.7)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Flammable solid</td>
</tr>
<tr>
<td>2</td>
<td>Warning</td>
<td>Flammable solid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat/sparks/open flame/Hot surfaces. - No smoking, Chemical manufacturer, importer, or distributor to specify applicable ignition source(s).</td>
<td>In case of fire: Use ... to extinguish ... Chemical manufacturer, importer, or distributor to specify appropriate media. - if water increases risk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground/Bond container and receiving equipment. - if electrostatically sensitive material is for reloading.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use explosion-proof electrical/ventilating/ lighting/... equipment. ... Chemical manufacturer, importer, or distributor to specify other equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- if short circuit occurs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.21 SELF-REACTIVE SUBSTANCES AND MIXTURES
(Classified in Accordance with Appendix B.8)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>Danger</td>
<td>Heating may cause an explosion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precautionary statements</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat/sparks/open flame/Hot surfaces. - No smoking, Chemical manufacturer, importer, or distributor to specify applicable ignition source(s).</td>
<td>In case of fire: Use ... to extinguish ... Chemical manufacturer, importer, or distributor to specify appropriate media. - if water increases risk.</td>
<td></td>
<td>Dispose of contents/container to... ... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td>Keep/Store away from clothing/...combustible materials. ... Chemical manufacturer, importer, or distributor to specify other incompatible materials.</td>
<td>In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion.</td>
<td></td>
<td>Store at temperatures not exceeding ...°C...°F. ... Chemical manufacturer, importer, or distributor to specify temperature.</td>
</tr>
<tr>
<td>Keep only in original container.</td>
<td></td>
<td></td>
<td>Store away from other materials.</td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.4.21 SELF-REACTIVE SUBSTANCES AND MIXTURES (CONTINUED)
(Classified in Accordance with Appendix B,8)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type B</td>
<td>Danger</td>
<td>Heating may cause a fire or explosion</td>
</tr>
</tbody>
</table>

Precautionary statements

- **Prevention**
 - Keep away from heat/sparks/open flames/burn surfaces. - No smoking.
 - Chemical manufacturer, importer, or distributor to specify applicable ignition sources.
 - Keep/Store away from clothing/.../combustible materials.
 - Chemical manufacturer, importer, or distributor to specify other incompatible materials.
 - Keep only in original container.
 - Wear protective gloves/eye protection/face protection.
 - Chemical manufacturer, importer, or distributor to specify type of equipment.

Response

- In case of fire: Use ... to extinguish.
 - Chemical manufacturer, importer, or distributor to specify appropriate media.
 - If water increases risk.
 - In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion.

Storage

- Store in a well-ventilated place. Keep cool.
 - Store at temperatures not exceeding ...°C/...°F.
 - Chemical manufacturer, importer, or distributor to specify temperature.
 - Store away from other materials.

Disposal

- Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).

C.4.21 SELF-REACTIVE SUBSTANCES AND MIXTURES (CONTINUED)
(Classified in Accordance with Appendix B,8)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type C</td>
<td>Danger</td>
<td>Heating may cause a fire</td>
</tr>
<tr>
<td>Type D</td>
<td>Danger</td>
<td>Heating may cause a fire</td>
</tr>
<tr>
<td>Type E</td>
<td>Warning</td>
<td>Heating may cause a fire</td>
</tr>
<tr>
<td>Type F</td>
<td>Warning</td>
<td>Heating may cause a fire</td>
</tr>
</tbody>
</table>

Precautionary statements

- **Prevention**
 - Keep away from heat/sparks/open flames/burn surfaces. - No smoking.
 - Chemical manufacturer, importer, or distributor to specify applicable ignition sources.
 - Keep/Store away from clothing/.../combustible materials.
 - Chemical manufacturer, importer, or distributor to specify other incompatible materials.
 - Keep only in original container.
 - Wear protective gloves/eye protection/face protection.
 - Chemical manufacturer, importer, or distributor to specify type of equipment.

Response

- In case of fire: Use ... to extinguish.
 - Chemical manufacturer, importer, or distributor to specify appropriate media.
 - If water increases risk.

Storage

- Store in a well-ventilated place. Keep cool.
 - Store at temperatures not exceeding ...°C/...°F.
 - Chemical manufacturer, importer, or distributor to specify temperature.
 - Store away from other materials.

Disposal

- Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).
C.4.22 PYROPHORIC LIQUIDS
(Classified in Accordance with Appendix B.9)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Catches fire spontaneously if exposed to air</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition source(s).</td>
<td>If on skin: Immerse in cool water/wrap with wet bandages In case of fire: Use to extinguish Chemical manufacturer, importer, or distributor to specify appropriate media. - if water increases risk.</td>
<td>Store contents under - Chemical manufacturer, importer, or distributor to specify appropriate liquid or inert gas.</td>
<td></td>
</tr>
<tr>
<td>Do not allow contact with air.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.23 PYROPHORIC SOLIDS
(Classified in Accordance with Appendix B.10)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Catches fire spontaneously if exposed to air</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition source(s).</td>
<td>Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. In case of fire: Use to extinguish Chemical manufacturer, importer, or distributor to specify appropriate media. - if water increases risk.</td>
<td>Store contents under - Chemical manufacturer, importer, or distributor to specify appropriate liquid or inert gas.</td>
<td></td>
</tr>
<tr>
<td>Do not allow contact with air.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1910 OSHA GUIDE

C.4.24 SELF-HEATING SUBSTANCES AND MIXTURES
(Classified in Accordance with Appendix B.11)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>Self-heating; may catch fire</td>
</tr>
<tr>
<td>2</td>
<td>Warning</td>
<td>Self-heating in large quantities; may catch fire</td>
</tr>
</tbody>
</table>

Precautionary statements:

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep cool. Protect from sunlight.</td>
<td>Maintain air gap between stacks/pallets.</td>
<td>Store bulk masses greater than ... kg/...lbs at temperatures not exceeding ...°C/...°F.</td>
<td>Store away from other materials.</td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.25 SUBSTANCES AND MIXTURES WHICH, IN CONTACT WITH WATER, EMIT FLAMMABLE GASES
(Classified in Accordance with Appendix B.12)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>In contact with water releases flammable gases, which may ignite spontaneously</td>
</tr>
<tr>
<td>2</td>
<td>Danger</td>
<td>In contact with water releases flammable gas</td>
</tr>
</tbody>
</table>

Precautionary statements:

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not allow contact with water. Handle under inert gas. Protect from moisture. Wear protective gloves/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td>Brush off loose particles from skin and immerse in cool water/wrap in wet bandages.</td>
<td>Store in a dry place. Store in a closed container.</td>
<td>Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.4.25 SUBSTANCES AND MIXTURES WHICH, IN CONTACT WITH WATER, EMIT FLAMMABLE GASES (CONTINUED)
(Classified in Accordance with Appendix B.12)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Warning</td>
<td>In contact with water releases flammable gas</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handle under inert gas. Protect from moisture.</td>
<td>In case of fire: Use... to extinguish. Chemical manufacturer, importer, or distributor to specify appropriate media. - if water increases risk.</td>
<td>Store in a dry place. Store in a closed container.</td>
<td>Dispose of contents/container in... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.26 OXIDIZING LIQUIDS
(Classified in Accordance with Appendix B.13)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>May cause fire or explosion; strong oxidizer</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat.</td>
<td>If on clothing: Rinse immediately contaminated clothing and skin with plenty of water before removing clothes.</td>
</tr>
<tr>
<td>Keep/Store away from clothing and other combustible materials.</td>
<td>In case of major fire and large quantities Evacuate area. Fight fire remotely due to the risk of explosion.</td>
</tr>
<tr>
<td>Take any precaution to avoid mixing with combustibles/... Chemical manufacturer, importer, or distributor to specify other incompatible materials.</td>
<td>In case of fire: Use... to extinguish. Chemical manufacturer, importer, or distributor to specify appropriate media. - if water increases risk.</td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
</tr>
<tr>
<td>Wear fire/flame resistant/retardant clothing.</td>
<td></td>
</tr>
</tbody>
</table>

Disposal

| | Dispose of contents/container in... in accordance with local/regional/national/international regulations (to be specified). |
| | | | |
C.4.26 OXIDIZING LIQUIDS (CONTINUED)
(Classified in Accordance with Appendix B.13)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Danger</td>
<td>May intensify fire; oxidizer</td>
</tr>
<tr>
<td>3</td>
<td>Warning</td>
<td>May intensify fire; oxidizer</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat.</td>
</tr>
<tr>
<td>Keep away from clothing and other combustible materials.</td>
</tr>
<tr>
<td>Take any precaution to avoid mixing with combustibles/...</td>
</tr>
<tr>
<td>... Chemical manufacturer, importer, or distributor to specify other incompatible materials.</td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection.</td>
</tr>
<tr>
<td>Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
</tr>
</tbody>
</table>

Response

| In case of fire: Use ... to extinguish. |
| ... Chemical manufacturer, importer, or distributor to specify appropriate media. |
| ... d'entrer incendies risk. |

Storage

| Dispose of contents/container to... |
| ... in accordance with local/regional/national/international regulations (as be specified). |

C.4.27 OXIDIZING SOLIDS
(Classified in Accordance with Appendix B.14)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Danger</td>
<td>May cause fire or explosion; strong oxidizer</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat.</td>
</tr>
<tr>
<td>Keep away from clothing and other combustible materials.</td>
</tr>
<tr>
<td>Take any precaution to avoid mixing with combustibles/...</td>
</tr>
<tr>
<td>... Chemical manufacturer, importer, or distributor to specify other incompatible materials.</td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection.</td>
</tr>
<tr>
<td>Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
</tr>
<tr>
<td>Wear fire/flame resistant/retardant clothing.</td>
</tr>
</tbody>
</table>

Response

| If on clothing: Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
| In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
| In case of fire: Use ... to extinguish. |
| ... Chemical manufacturer, importer, or distributor to specify appropriate media. |
| ... d'entrer incendies risk. |

Storage

| Dispose of contents/container to... |
| ... in accordance with local/regional/national/international regulations (as be specified). |

Disposal
C.4.27 OXIDIZING SOLIDS (CONTINUED)
(Classified in Accordance with Appendix B.14)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Danger</td>
<td>May intensify fire; oxidizer</td>
</tr>
<tr>
<td>3</td>
<td>Warning</td>
<td>May intensify fire; oxidizer</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat.</td>
<td>In case of fire: Use ... to extinguish. ... Chemical manufacturer, importer, or distributor to specify appropriate media.</td>
<td>Dispose of contents/container in... in accordance with local/regional/national/international regulations (as to be specified).</td>
<td></td>
</tr>
<tr>
<td>Keep/Store away from clothing/... combustible materials. ... Chemical manufacturer, importer, or distributor to specify incompatible materials.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take any precaution to avoid mixing with combustibles/... Chemical manufacturer, importer, or distributor to specify other incompatible materials.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.28 ORGANIC PEROXIDES
(Classified in Accordance with Appendix B.15)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>Danger</td>
<td>Heating may cause an explosion</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat/sparks/open flames/hot surfaces.- No smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition sources.</td>
<td>Store at temperatures not exceeding 7°C/45°F. Keep cool. Chemical manufacturer, importer, or distributor to specify temperature.</td>
<td>Protect from sunlight. Store away from other materials.</td>
<td>Dispose of contents/container in... in accordance with local/regional/national/international regulations (as to be specified).</td>
</tr>
<tr>
<td>Keep/Store away from clothing/... combustible materials. ... Chemical manufacturer, importer, or distributor to specify incompatible materials.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keep only in original container.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.4.28 ORGANIC PEROXIDES (CONTINUED)
(Classified in accordance with Appendix B.15)

#### Hazard category	Signal word	Hazard statement
Type B | Danger | Heating may cause a fire or explosion

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition source(s).</td>
<td>Store at temperatures not exceeding ...°C/...°F. Keep cool. Chemical manufacturer, importer, or distributor to specify temperature.</td>
<td>Protect from sunlight. Store away from other materials.</td>
<td>Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td>Keep/Store away from clothing/.../combustible materials... Chemical manufacturer, importer, or distributor to specify incompatible materials.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keep only in original container.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.4.28 ORGANIC PEROXIDES (CONTINUED)
(Classified in accordance with Appendix B.15)

#### Hazard category	Signal word	Hazard statement
Type C | Danger | Heating may cause a fire
Type D | Danger | Heating may cause a fire
Type E | Warning | Heating may cause a fire
Type F | Warning | Heating may cause a fire

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Chemical manufacturer, importer, or distributor to specify applicable ignition source(s).</td>
<td>Store at temperatures not exceeding ...°C/...°F. Keep cool. Chemical manufacturer, importer, or distributor to specify temperature.</td>
<td>Protect from sunlight. Store away from other materials.</td>
<td>Dispose of contents/container to... in accordance with local/regional/national/international regulations (to be specified).</td>
</tr>
<tr>
<td>Keep/Store away from clothing/.../combustible materials... Chemical manufacturer, importer, or distributor to specify incompatible materials.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keep only in original container.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear protective gloves/eye protection/face protection. Chemical manufacturer, importer, or distributor to specify type of equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.4.29 CORROSIVE TO METALS
(Classified in Accordance with Appendix B.16)

<table>
<thead>
<tr>
<th>Hazard category</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Warning</td>
<td>May be corrosive to metals</td>
</tr>
</tbody>
</table>

Precautionary statements

<table>
<thead>
<tr>
<th>Prevention</th>
<th>Response</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep only in original container.</td>
<td>Absorb spillage to prevent material damage.</td>
<td>Store in corrosive resistant... container with a resistant inner liner. ... Chemical manufacturer, importer, or distributor to specify other compatible materials.</td>
<td></td>
</tr>
</tbody>
</table>

C.4.30 Label elements for OSHA defined hazards

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrophoric Gas</td>
<td>Danger</td>
<td>Catches fire spontaneously if exposed to air</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Asphyxiant</td>
<td>Warning</td>
<td>May displace oxygen and cause rapid suffocation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Signal word</th>
<th>Hazard statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustible Dust</td>
<td>Warning</td>
<td>May form combustible dust concentrations in air</td>
</tr>
</tbody>
</table>

2 The chemical manufacturer or importer shall label chemicals that are shipped in dust form, and present a combustible dust hazard in that form when used downstream, under paragraph (b)(11); 2) the chemical manufacturer or importer shipping chemicals that are in a form that is not yet a dust must provide a label to customers under paragraph (d)(4)(ii); 3) under normal conditions of use, the chemicals are processed in a downstream workplace in such a way that they present a combustible dust hazard, and 3) the employer shall follow the workplace labeling requirements under paragraph (1966) where combustible dust hazards are present.
1910 OSHA GUIDE

APPENDIX D TO §1910.1200—SAFETY DATA SHEETS (MANDATORY)

A safety data sheet (SDS) shall include the information specified in Table D.1 under the section number and heading indicated for sections 1-11 and 16. If no relevant information is found for any given subheading within a section, the SDS shall clearly indicate that no applicable information is available. Sections 12-15 may be included in the SDS, but are not mandatory.

TABLE D.1—MINIMUM INFORMATION FOR AN SDS

<table>
<thead>
<tr>
<th>Heading</th>
<th>Subheading</th>
</tr>
</thead>
</table>
| 1. Identification | (a) Product identifier used on the label;
(b) Other means of identification;
(c) Recommended use of the chemical and restrictions on use;
(d) Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party;
(e) Emergency phone number. |
| 2. Hazard(s) identification | (a) Classification of the chemical in accordance with paragraph (d) of §1910.1200;
(b) Signal word, hazard statement(s), symbol(s) and precautionary statement(s) in accordance with paragraph (f) of §1910.1200. (Hazard symbols may be provided as graphical reproductions in black and white or the name of the symbol, e.g., flame, skull and crossbones);
(c) Describe any hazards not otherwise classified that have been identified during the classification process;
(d) Where an ingredient with unknown acute toxicity is used in a mixture at a concentration ≥1% and the mixture is not classified based on testing of the mixture as a whole, a statement that X% of the mixture consists of ingredient(s) of unknown acute toxicity is required. |
| 3. Composition/Information on ingredients | Except as provided for in paragraph (i) of §1910.1200 on trade secrets:
For Substances:
(a) Chemical name;
(b) Common name and synonyms;
(c) CAS number and other unique identifiers;
(d) Impurities and stabilizing additives which are themselves classified and which contribute to the classification of the substance.
For Mixtures:
In addition to the information required for substances: In addition to the information required for substances:
(a) The chemical name and concentration (exact percentage) or concentration ranges of all ingredients which are classified as health hazards in accordance with paragraph (d) of §1910.1200 and
(1) Are present above their cut-off/concentration limits; or
(2) Present a health risk below the cut-off/concentration limits.
(b) The concentration (exact percentage) shall be specified unless a trade secret claim is made in accordance with paragraph (i) of §1910.1200, when there is batch-to-batch variability in the production of a mixture, or for a group of substantially similar mixtures (See A.O.5.1.2) with similar chemical composition. In these cases, concentration ranges may be used.
For All Chemicals Where a Trade Secret is Claimed:
Where a trade secret is claimed in accordance with paragraph (i) of §1910.1200, a statement that the specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret is required. |
| 4. First-aid measures | (a) Description of necessary measures, subdivided according to the different routes of exposure, i.e., inhalation, skin and eye contact, and ingestion; (b) Most important symptoms/effects, acute and delayed. (c) Indication of immediate medical attention and special treatment needed, if necessary. |
| 5. Fire-fighting measures | (a) Suitable (and unsuitable) extinguishing media. (b) Specific hazards arising from the chemical (e.g., nature of any hazardous combustion products). (c) Special protective equipment and precautions for fire-fighters. |
| 6. Accidental release measures | (a) Personal precautions, protective equipment, and emergency procedures. (b) Methods and materials for containment and cleaning up. |
| 7. Handling and storage | (a) Precautions for safe handling. (b) Conditions for safe storage, including any incompatibilities. |
| 8. Exposure controls/personal protection | (a) OSHA permissible exposure limit (PEL), American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV), and any other exposure limit used or recommended by the chemical manufacturer, importer, or employer preparing the safety data sheet, where available. (b) Appropriate engineering controls. (c) Individual protection measures, such as personal protective equipment. |
| 9. Physical and chemical properties | (a) Appearance (physical state, color, etc.);
(b) Odor;
(c) Odor threshold;
(d) pH;
(e) Melting point/freezing point;
(f) Initial boiling point and boiling range;
(g) Flash point;
(h) Evaporation rate; |
TABLE D.1—MINIMUM INFORMATION FOR AN SDS, Continued

<table>
<thead>
<tr>
<th>Heading</th>
<th>Subheading</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Flammability (solid, gas);</td>
<td></td>
</tr>
<tr>
<td>(j) Upper/lower flammability or explosive limits;</td>
<td></td>
</tr>
<tr>
<td>(k) Vapor pressure;</td>
<td></td>
</tr>
<tr>
<td>(l) Vapor density;</td>
<td></td>
</tr>
<tr>
<td>(m) Relative density;</td>
<td></td>
</tr>
<tr>
<td>(n) Solubility(ies);</td>
<td></td>
</tr>
<tr>
<td>(o) Partition coefficient: n-octanol/water;</td>
<td></td>
</tr>
<tr>
<td>(p) Auto-ignition temperature;</td>
<td></td>
</tr>
<tr>
<td>(q) Decomposition temperature;</td>
<td></td>
</tr>
<tr>
<td>(r) Viscosity;</td>
<td></td>
</tr>
<tr>
<td>10. Stability and reactivity..............</td>
<td>(a) Reactivity;</td>
</tr>
<tr>
<td></td>
<td>(b) Chemical stability;</td>
</tr>
<tr>
<td></td>
<td>(c) Possibility of hazardous reactions;</td>
</tr>
<tr>
<td></td>
<td>(d) Conditions to avoid (e.g., static discharge, shock, or vibration);</td>
</tr>
<tr>
<td></td>
<td>(e) Incompatible materials;</td>
</tr>
<tr>
<td></td>
<td>(f) Hazardous decomposition products.</td>
</tr>
<tr>
<td>11. Toxicological information</td>
<td>Description of the various toxicological (health) effects and the available data used to identify those effects, including:</td>
</tr>
<tr>
<td></td>
<td>(a) Information on the likely routes of exposure (inhalation, ingestion, skin and eye contact);</td>
</tr>
<tr>
<td></td>
<td>(b) Symptoms related to the physical, chemical and toxicological characteristics;</td>
</tr>
<tr>
<td></td>
<td>(c) Delayed and immediate effects and also chronic effects from short- and long-term exposure;</td>
</tr>
<tr>
<td></td>
<td>(d) Numerical measures of toxicity (such as acute toxicity estimates).</td>
</tr>
<tr>
<td></td>
<td>(e) Whether the hazardous chemical is listed in the National Toxicology Program (NTP) Report on Carcinogens (latest edition) or has been found to be a potential carcinogen in the International Agency for Research on Cancer (IARC) Monographs (latest edition), or by OSHA.</td>
</tr>
<tr>
<td>12. Ecological information (Non-mandatory)</td>
<td>(a) Ecotoxicity (aquatic and terrestrial, where available); (b) Persistence and degradability; (c) Bioaccumulative potential; (d) Mobility in soil; (e) Other adverse effects (such as hazardous to the ozone layer).</td>
</tr>
<tr>
<td>13. Disposal considerations (Non-mandatory)</td>
<td>Description of waste residues and information on their safe handling and methods of disposal, including the disposal of any contaminated packaging.</td>
</tr>
<tr>
<td>14. Transport information (Non-mandatory)</td>
<td>(a) UN number;</td>
</tr>
<tr>
<td></td>
<td>(b) UN proper shipping name;</td>
</tr>
<tr>
<td></td>
<td>(c) Transport hazard class(es);</td>
</tr>
<tr>
<td></td>
<td>(d) Packing group, if applicable;</td>
</tr>
<tr>
<td></td>
<td>(e) Environmental hazards (e.g., Marine pollutant (Yes/No));</td>
</tr>
<tr>
<td></td>
<td>(f) Transport in bulk (according to Annex II of MARPOL 73/78 and the IBC Code);</td>
</tr>
<tr>
<td></td>
<td>(g) Special precautions which a user needs to be aware of, or needs to comply with, in connection with transport or conveyance either within or outside their premises.</td>
</tr>
<tr>
<td>15. Regulatory information (Non-mandatory)</td>
<td>Safety, health and environmental regulations specific for the product in question.</td>
</tr>
<tr>
<td>16. Other information, including date of preparation or last revision</td>
<td>The date of preparation of the SDS or the last change to it.</td>
</tr>
</tbody>
</table>

APPENDIX E TO §1910.1200—DEFINITION OF "TRADE SECRET" (MANDATORY)

The following is a reprint of the Restatement of Torts section 757, comment b (1939):

b. Definition of trade secret. A trade secret may consist of any formula, pattern, device or compilation of information which is used in one's business, and which gives him an opportunity to obtain an advantage over competitors who do not know or use it. It may be a formula for a chemical compound, a process of manufacturing, treating or preserving materials, a pattern for a machine or other device, or a list of customers. It differs from other secret information in a business (see 756 of the Restatement of Torts which is not included in this Appendix) in that it is not simply information as to single or ephemeral events in the conduct of the business, as, for example, the amount or other terms of a secret bid for a contract or the salary of certain employees, or the security investments made or contemplated, or the date fixed for the announcement of a new policy or for bringing out a new model or the like. A trade secret is a process or device for continuous use in the operations of the business. Generally it relates to the production of goods, as, for example, a machine or formula for the production of an article. It may, however, relate to the sale of goods or to other operations in the business, such as a code for determining discounts, rebates or other concessions in a price list or catalogue, or a list of specialized customers, or a method of bookkeeping or other office management.

Secrecy. The subject matter of a trade secret must be secret. Matters of public knowledge or of general knowledge in an industry cannot be appropriated by one as his secret. Matters which are completely disclosed by the goods which one markets cannot be his secret. Substantially, a trade secret is known only in the particular business in which it is used. It is not requisite...
that only the proprietor of the business know it. He may, without losing his protection, communicate it to employees involved in its use. He may likewise communicate it to others pledged to secrecy. Others may also know of it independently, as, for example, when they have discovered the process or formula by independent invention and are keeping it secret. Nevertheless, a substantial element of secrecy must exist, so that, except by the use of improper means, there would be difficulty in acquiring the information. An exact definition of a trade secret is not possible. Some factors to be considered in determining whether given information is one's trade secret are: (1) The extent to which the information is known outside of his business; (2) the extent to which it is known by employees and others involved in his business; (3) the extent of measures taken by him to guard the secrecy of the information; (4) the value of the information to him and his competitors; (5) the amount of effort or money expended by him in developing the information; and (6) the ease or difficulty with which the information could be properly acquired or duplicated by others.

Novelty and prior art. A trade secret may be a device or process which is patentable; but it need not be that. It may be a device or process which is clearly anticipated in the prior art or which is merely a mechanical improvement that a good mechanic can make. Novelty and invention are not requisite for a trade secret as they are for patentability. These requirements are essential to patentability because a patent protects against unlicensed use of the patented device or process even by one who discovers it properly through independent research. The patent monopoly is a reward to the inventor. But such is not the case with a trade secret. Its protection is not based on a policy of rewarding or otherwise encouraging the development of secret processes or devices. The protection is merely against breach of faith and reprehensible means of learning another's secret. For this limited protection it is not appropriate to require also the kind of novelty and invention which is requisite for patentability. The nature of the secret is, however, an important factor in determining the kind of relief that is appropriate against one who is subject to liability under the rule stated in this section. Thus, if the secret consists of a device or process which is a novel invention, one who acquires it wrongly is ordinarily enjoined from further use of it if it is required to account for the profits derived from his past use. If, on the other hand, the secret consists of mechanical improvements that a good mechanic can make without resort to the secret, the wrongdoer's liability may be limited to damages for injury against future use of the improvements made with the aid of the secret may be inappropriate.

APPENDIX F TO §1910.1200—GUIDANCE FOR HAZARD CLASSIFICATIONS RE: CARCINOGENICITY (NON-MANDATORY)

The mandatory criteria for classification of a chemical for carcinogenicity under HCS (§1910.1200) are found in Appendix A.B to this section. A non-mandatory Appendix provides additional guidance on hazard classification for carcinogenicity. Part A of Appendix F includes background guidance provided by the Preamble of the International Agency for Research on Cancer (IARC) "Monographs on the Evaluation of Carcinogenic Risks to Humans" (2006), Part B provides IARC classification information. Part C provides background guidance from the National Toxicology Program (NTP) "Report on Carcinogenesis" (Roc), and Part D is a table that compares GHS carcinogen hazard categories to carcinogen classifications under IARC and NTP, allowing classifiers to be able to use information from IARC and NTP Roc carcinogen classifications to complete their classifications under the GHS, and thus the HCS.

Part A: Background Guidance

As noted in Footnote 6 of Appendix A.6 to this section, the GHS includes as guidance for classifiers information taken from the Preamble of the International Agency for Research on Cancer (IARC) "Monographs on the Evaluation of Carcinogenic Risks to Humans" (2006), providing guidance on the evaluation of the strength and evidence of carcinogenic risks to humans. This guidance also discusses some additional considerations in classification and an approach to analysis, rather than hard-and-fast rules. Part A is consistent with Appendix A.6, and should help in evaluating information to determine carcinogenicity.

Carcinogenicity in humans:

The evidence relevant to carcinogenicity from studies in humans is classified into one of the following categories:

(a) Sufficient evidence of carcinogenicity: A causal relationship has been established between exposure to the agent and human cancer. That is, a positive relationship has been observed between the exposure and cancer in studies in which chance, bias and confounding could be ruled out with reasonable confidence.

(b) Limited evidence of carcinogenicity: A positive association has been observed between exposure to the agent and cancer for which a causal interpretation is considered by the Working Group to be credible, but chance, bias or confounding could not be ruled out with reasonable confidence.

In some instances, the above categories may be used to classify the degree of evidence related to carcinogenicity in specific organs or tissues. Carcinogenicity in experimental animals:

The evidence relevant to carcinogenicity in experimental animals is classified into one of the following categories:

(a) Sufficient evidence of carcinogenicity: A causal relationship has been established between the agent and an increased incidence of malignant neoplasms or of an appropriate combination of benign and malignant neoplasms in two or more species of animals or two or more independent studies in one species may also lead to ongoing or in different laboratories or under different protocols. An increased incidence of tumors in both sexes of a single species in a well-conducted study, ideally conducted under Good Laboratory Practices, can also provide sufficient evidence.

Exceptionally, a single study in one species and sex might be considered to provide sufficient evidence of carcinogenicity when malignant neoplasms occur in an unusual degree with regard to incidence, site, type of tumor or age at onset, or when there are strong findings of tumors at multiple sites.

(b) Limited evidence of carcinogenicity: The data suggest a carcinogenic effect but are limited for making a definitive evaluation because, e.g. the evidence of carcinogenicity is restricted to a single experiment; there are unresolved questions regarding the adequacy of the design, conduct or interpretation of the studies; the agent increases the incidence only of benign neoplasms or lesions of uncertain neoplastic potential; or the evidence of carcinogenicity is restricted to studies that demonstrate only promoting activity in a narrow range of tissues or organs.

Guidance on How To Consider Important Factors in Classification of Carcinogenicity (See Reference Section)

The weight of evidence analysis called for in GHS and the HCS (§1910.1200) is an integrative approach that considers important factors in determining carcinogenic potential along with the strength of evidence analysis. The IPCS "Conceptual Framework for Evaluating a Mode of Action for Chemical Carcinogenesis" (2001), International Life Sciences Institute (ILSI) "Framework for Risk Analysis of Carcinogenicity: Modes of Action" (Mekx, et al., 2003; Cohen et al., 2003, 2004), and Preamble to the IARC Monographs (2006; Section B.6. (Scientific Review and Evaluation; Evaluation and Rationale) provide a basis for systematic assessments that may be performed in a consistent fashion. The IPCS also convened a panel in 2004 to further develop and clarify the human relevance framework. However, the above documents are not intended to dictate answers, nor provide lists of criteria to be checked off.

Mode of Action

Various documents on carcinogen assessment all note that mode of action in and of itself, or consideration of comparative metabolism, should be evaluated on a case-by-case basis and are part of an analytic evaluative approach. One must look closely at any mode of action in animal experiments, taking into consideration comparative toxicokinetics/toxicodynamics between the animal test species and humans to determine the relevance of the results to humans. This may lead to the possibility of discounting very specific effects of certain types of substances. Life stage-dependent effects on carcinogenesis (e.g. timed specific differentiation of a cell type) are differences between animals and humans. Only if a mode of action of tumor development is conclusively determined not to be operative in humans may the carcinogenic evidence for that tumor be discounted. However, a weight of evidence evaluation for a substance calls for any other tumorogenic activity to be evaluated, as well.

Responses in Multiple Animal Experiments

Positive responses in several species add to the weight of evidence that a substance is a carcinogen. Taking into account all of the factors listed in A.6.2.5.2 and more, such chemicals with positive outcomes in two or more species would be provisionally considered to be classified in GHS Category 1B until human relevance of animal results are assessed in entirety. It should be noted, however, that positive results for one species in at least two independent studies, or a single positive study showing unusually strong evidence of malignancy may also lead to Category 1B.

Responses in One Sex or Both Sexes
Any case of gender-specific tumors should be evaluated in light of the total tumorigenic response to the substance observed at other sites (multi-site responses or incidence above background) in determining the carcinogenic potential of the substance.

If tumors are seen only in one sex of an animal species, the mode of action should be carefully evaluated to see if the response is consistent with the postulated mode of action. Effects seen only in one sex in a test species may be less convincing than effects seen in both sexes, unless there is a clear patho-physiological difference consistent with the mode of action to explain the single sex response.

Con founding Effects of Excessive Toxicity or Localized Effects

Tumors occurring only at excessive doses associated with severe toxicity generally have doubtful potential for carcinogenicity in humans. In addition, tumors occurring only at sites of contact and/or only at excessive doses need to be carefully evaluated for human relevance for carcinogenic hazard. For example, forestomach tumors, following administration by gavage of an irritating or corrosive, non-mutagenic chemical, may be of questionable relevance. However, such determinations must be evaluated carefully in justifying the carcinogenic potential for humans; any occurrence of other tumors at distant sites must also be considered.

Tumor Type, Reduced Tumor Latency

Unusual tumor types or tumors occurring with reduced latency may add to the weight of evidence for the carcinogenic potential of a substance, even if the tumors are not statistically significant.

Toxicokinetic behavior is normally assumed to be similar in animals and humans, at least from a qualitative perspective. On the other hand, certain tumor types in animals may be associated with toxicokinetics or toxicodynamics that are unique to the animal species tested and may not be predictive of carcinogenicity in humans. Very few such examples have been agreed internationally. However, one example is the lack of human relevance of tumors in male rats associated with compounds causing α₂-globulin nephropathy (IARC, Scientific Publications N° 147). Even when a particular tumor type may be discounted, expert judgment must be used in assessing the total tumor profile in any animal experiment.

Part B: International Agency for Research on Cancer (IARC)

IARC Carcinogenic Classification Categories:

Group 1: The agent is carcinogenic to humans

This category is used when there is sufficient evidence of carcinogenicity in humans. Exceptionally, an agent may be placed in this category when evidence of carcinogenicity in humans is less than sufficient but there is sufficient evidence of carcinogenicity in experimental animals and strong evidence in exposed humans that the agent acts through a relevant mechanism of carcinogenicity.

Group 2:

This category includes agents for which, at one extreme, the degree of evidence of carcinogenicity in humans is almost sufficient, as well as those for which, at the other extreme, there are no human data but for which there is evidence of carcinogenicity in experimental animals. Agents are assigned to either Group 2A (probable carcinogenic to humans) or Group 2B (possibly carcinogenic to humans) on the basis of experimental and epidemiological evidence of carcinogenicity and mechanistic and other relevant data. The terms probably carcinogenic and possibly carcinogenic have no quantitative significance and are used simply as descriptors of different levels of evidence of human carcinogenicity, with probably carcinogenic signifying a higher level of evidence than possibly carcinogenic.

Group 2A: The agent is probably carcinogenic to human.

This category is used when there is limited evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals. In some cases, an agent may be classified in this category when there is inadequate evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals and strong evidence that the carcinogenesis is mediated by a mechanism that also operates in humans. Exceptionally, an agent may be classified in this category solely on the basis of limited evidence of carcinogenicity in humans. An agent may be assigned to this category if it clearly belongs, based on mechanistic considerations, to a class of agents for which one or more members have been classified in Group 1 or Group 2A.

Group 2B: The agent is possibly carcinogenic to humans.

This category is used for agents for which there is limited evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals. It may also be used when there is inadequate evidence of carcinogenicity in humans but there is sufficient evidence of carcinogenicity in experimental animals. In some instances, an agent for which there is inadequate evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals together with supporting evidence from mechanistic and other relevant data may be placed in this group. An agent may be classified in this category solely on the basis of strong evidence from mechanistic and other relevant data.

Part C: National Toxicology Program (NTP), "Report on Carcinogens", Background Guidance

NTP Listing Criteria:

The criteria for listing an agent, substance, mixture, or exposure circumstances in the Report on Carcinogens (RoC) are as follows:

Known To Be A Human Carcinogen: There is sufficient evidence of carcinogenicity from studies in humans that indicates a causal relationship between exposure to the agent, substance, or mixture, and human cancer.

Reasonably Anticipated To Be A Human Carcinogen: There is limited evidence of carcinogenicity from studies in humans that indicates that a causal interpretation is credible, but that alternative explanations, such as chance, bias, or confounding factors, could not adequately be excluded, or there is sufficient evidence of carcinogenicity from studies in experimental animals that indicates there is an increased incidence of malignant and/or a combination of malignant and benign tumors in multiple species or at multiple tissue sites, or by multiple routes of exposure, or to an unusual degree with regard to incidence, site, or type of tumor, or age at onset, or there is less than sufficient evidence of carcinogenicity in humans or laboratory animals; however, the agent, substance, or mixture belongs to a well-defined, structurally-related class of substances. This data is listed in a previous Report on Carcinogens as either known to be a human carcinogen or reasonably anticipated to be a human carcinogen, or there is convincing relevant information that the agent acts through mechanisms indicating it would likely cause cancer in humans.

Conclusions regarding carcinogenicity in humans or experimental animals are based on scientific judgment, with consideration given to all relevant information. Relevant information includes, but is not limited to, dose response, route of exposure, chemical structure, metabolism, pharmacokinetics, sensitive sub-populations, genetic effects, or other data relating to mechanism of action or factors that may be unique to a given substance. For example, there may be substances for which there is evidence of carcinogenicity in laboratory animals, but there are compelling data indicating that the agent acts through mechanisms that do not operate in humans and would therefore not reasonably be anticipated to cause cancer in humans.

Part D: Table Relating Approximate Equivalences Among IARC, NTP RoC, and GHS Carcinogenicity Classifications

The following table may be used to perform hazard classifications for carcinogenicity under the HCS (§1910.1200). It relates the approximated GHS hazard categories for carcinogenicity to the classifications provided by IARC and NTP, as described in Parts B and C of this Appendix.

<table>
<thead>
<tr>
<th>IARC</th>
<th>GHS</th>
<th>NTP RoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Category 1A</td>
<td>Known.</td>
</tr>
<tr>
<td>Group 2A</td>
<td>Category 1B</td>
<td>Reasonably Anticipated (See Note 1).</td>
</tr>
<tr>
<td>Group 2B</td>
<td>Category 2</td>
<td>Reasonably Anticipated (See Note 1).</td>
</tr>
</tbody>
</table>

2 While most international agencies do not consider kidney tumors coincident with α₂-globulin nephropathy to be a predictor of risk in humans, this view is held. (See: Del et al., 2007).

5 This evidence can include traditional cancer epidemiology studies, data from clinical studies, and/or data derived from the study of tissues or cells from humans exposed to the substance in question that can be useful for evaluating whether a relevant cancer mechanism is operating in people.
1910 OSHA GUIDE

APPROXIMATE EQUIVALENCES AMONG CARCINOGEN
CLASSIFICATION SCHEMES , Continued

Note 1:
1. Limited evidence of carcinogenicity from studies in humans (corresponding to
IARC 2A/GHS 1B).
2. Sufficient evidence of carcinogenicity from studies in experimental animals (again,
especially corresponding to IARC 2A/GHS 1B).
3. Less than sufficient evidence of carcinogenicity in humans or laboratory animals;
however:
 a. The agent, substance, or mixture belongs to a well-defined, structurally-related
class of substances whose members are listed in a previous RoC as either "Known" or
"Reasonably Anticipated" to be a human carcinogen, or
 b. There is convincing relevant information that the agent acts through mechanisms
indicating it would likely cause cancer in humans.

*References
Cohen, S.M., J. Klaunig, M.E. Meek, R.N. Hill, T. Pastoor, L. Lehman-
McKeeman, J. Bucher, D.G. Longfellow, J. Seed, V. Dellarco, P. Fenner-
2003. The human relevance of information on carcinogenic modes of action:
Meek, M.E., J.R. Bucher, S.M. Cohen, V. Dellarco, R.N. Hill, L. Lehman-
framework for human relevance analysis of information on carcinogenic
Sonich-Mullin, C., R. Fielder, J. Wiltsie, K. Baetcke, J. Dampsey, P.
Fenner-Crisp, D. Grant, M. Hartley, A. Knapp, D. Kroese, I. Mangelsdorf, E.
Meek, J.M. Rice, and M. Younes. 2001. The conceptual framework for evalu-
34:146-155.
International Programme on Chemical Safety Harmonization Group.
International Agency for Research on Cancer. IARC Monographs on the
Evaluation of Carcinogenic Risks to Human. Preambles to Volumes. World
Health Organization. Lyon, France.
Cohen, S.M., P.A. Fenner-Crisp, and D.E. Patton. 2003. Special Issue:
Cancer Modes of Action and Human Relevance. Critical Reviews in Toxicol-
Capen, C.C., E. Dybing, and J.D. Willbourn. 1999. Species differences in
thyroid, kidney and urinary bladder carcinogenesis. International Agency for
Research on Cancer, Scientific Publication No 147.
2007. a2u-Globulin nephropathy and renal tumors in National Toxicology
Program studies. Toxicol. Pathol. 35:539-540.